
Garfield++ User Guide

Version 2025.1

March 2025

Contents

1. Introduction 5

2. Getting started 7
2.1. Prerequisites . 7
2.2. Downloading the source code . 7
2.3. Building the project . 8
2.4. Building an application . 9
2.5. Python . 10
2.6. Examples . 10

2.6.1. Drift tube . 11
2.6.2. GEM . 14
2.6.3. Silicon sensor . 18

3. Media 23
3.1. Transport parameters . 23

3.1.1. Transport parameter tables . 24
3.1.2. Visualization . 26

3.2. Gases . 27
3.2.1. 𝑊 values and Fano factors . 28
3.2.2. Ion transport . 29
3.2.3. Magboltz . 29

3.3. Semiconductors . 34
3.3.1. Silicon . 34
3.3.2. Gallium arsenide . 36
3.3.3. Diamond . 36

4. Components 37
4.1. Defining the geometry . 37

4.1.1. Visualizing the geometry . 39
4.2. Field maps . 40

4.2.1. Ansys . 40
4.2.2. Synopsys TCAD . 43
4.2.3. Elmer . 45
4.2.4. CST . 45
4.2.5. COMSOL . 45
4.2.6. Regular grids . 46
4.2.7. Visualizing the mesh . 49

4.3. Analytic fields . 50
4.3.1. Describing the cell . 51
4.3.2. Cylindrical geometries . 52
4.3.3. Periodicities . 53
4.3.4. Cell types . 53
4.3.5. Dipole moments . 54

3

Contents 4

4.3.6. Weighting fields . 55
4.3.7. Wire displacements . 56
4.3.8. Optimisation . 58

4.4. neBEM . 60
4.4.1. Weighting fields . 61

4.5. Parameterisations . 61
4.6. Other components . 63
4.7. Visualizing the field . 63

4.7.1. One-dimensional plots . 64
4.7.2. Two-dimensional plots . 64
4.7.3. Field lines . 66

4.8. Inspecting the field . 66
4.9. Sensor . 67

5. Tracks 69
5.1. Heed . 70

5.1.1. Delta electron transport . 71
5.1.2. Photon transport . 71
5.1.3. Magnetic fields . 71

5.2. SRIM . 72
5.3. TRIM . 74
5.4. Degrade . 75

6. Charge transport 76
6.1. Runge-Kutta-Fehlberg integration . 76
6.2. Monte Carlo integration . 80
6.3. Microscopic tracking . 82
6.4. Visualizing drift lines . 86
6.5. Visualizing isochrons . 86

7. Signals 89
7.1. Readout electronics . 91

7.1.1. Noise . 93
7.2. Delayed signals . 94

A. Units and constants 95

B. Gases 97

C. Solids 99
C.1. Box . 99
C.2. Tube . 99
C.3. Sphere . 100
C.4. Hole . 101
C.5. Ridge . 102
C.6. Extrusion . 104

1. Introduction

Garfield++ is an object-oriented toolkit for the detailed simulation of particle detectors based
on ionisation measurement in gases or semiconductors.

For calculating electric fields, the following techniques are currently being offered:

• solutions in the thin-wire limit for devices made of wires and planes;

• interfaces with finite element programs, which can compute approximate fields in nearly
arbitrary two- and three-dimensional configurations with dielectrics and conductors;

• an interface with the Synopsys Sentaurus device simulation program [47];

• an interface with the neBEM field solver [20, 21].

For calculating the transport properties of electrons in gas mixtures, an interface to the Magboltz
program [6, 7] is available.

The ionisation pattern produced by relativistic charged particles can be simulated using the
program Heed [44]. For simulating the ionisation produced by low-energy ions, results calculated
using the SRIM software package [50] can be imported. The program Degrade simulates ionisation
by electrons.

The present document aims to give an overview of Garfield++, but does not provide an exhaustive
description of all classes and functions. A number of examples and code snippets are included
which may serve as a basis for the user’s own programs. Further examples and information can be
found on the website http://garfieldpp.web.cern.ch/garfieldpp/. If you have questions,
doubts, comments etc. about the code or this manual, please do not hesitate to contact the
authors.

Fig. 1.1 gives an overview of the different types of classes and their interplay. Readers familiar
with the structure of (Fortran) Garfield [48] will recognize a rough correspondence between
the above classes and the sections of Garfield. Medium classes, for instance, can be regarded
as the counterpart of the &GAS section; Component classes are similar in scope to the &CELL
section.

Garfield++ also includes a number of classes for visualization purposes, e. g. for plotting drift
lines, making a contour plot of the electrostatic potential or inspecting the layout of the detector.
These classes rely extensively on the ROOT framework [9].

5

http://garfieldpp.web.cern.ch/garfieldpp/

Chapter 1. Introduction 6

Medium
material properties

• gases → Magboltz
• semiconductors

detector description

Geometry

Com-
ponent

field calculation
• analytic
• field maps
• neBEM

Sensor

Transport

Drift

charge transport
• microscopic
• MC
• RKF

Track

primary ionisation
• Heed
• SRIM, TRIM
• Degrade

Figure 1.1. Overview of the main classes in Garfield++ and their interplay.

2. Getting started

2.1. Prerequisites

To build Garfield++, and a project or application that depends on it, you need to have the
following software correctly installed and configured on your machine.

• ROOT 6,

• GSL1 (GNU Scientific Library),

• CMake2 (version 3.12 or or later),

• a C++ compiler compatible with the same C++ standard with which ROOT was compiled,

• a Fortran compiler,

• (optionally) OpenMP3 to enable some additional parallel computations.

For ROOT installation instructions, see

• https://root.cern.ch/building-root or

• https://root.cern.ch/downloading-root.

Declare the ROOTSYS environment variable to point to the base folder of the ROOT installation.
This operation is typically performed by the ROOT initialization script, called thisroot.sh.
Executing that script will also correctly initialize the right environment variables to install
Garfield.

2.2. Downloading the source code

The Garfield++ source code is managed by a git repository hosted on the CERN GitLab4 server,
https://gitlab.cern.ch/garfield/garfieldpp.

Choose a folder where the source code is to be downloaded. Note that the chosen folder must
be empty or non-existing. We will identify this folder with an environment variable named
GARFIELD_HOME. Note that this is not strictly required and you can simply replace the chosen
path in all the following commands where that variable appears. To define that variable in the
bash shell family type

export GARFIELD_HOME=/home/git/garfield

(replace /home/git/garfield by the path of your choice).

For (t)csh-type shells, type
1https://www.gnu.org/software/gsl/
2https://cmake.org/
3https://openmp.org
4https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md

7

https://root.cern.ch/building-root
https://root.cern.ch/downloading-root
https://gitlab.cern.ch/garfield/garfieldpp

Chapter 2. Getting started 8

setenv GARFIELD_HOME /home/git/garfield

Download the code from the repository, either using SSH access5

git clone ssh://git@gitlab.cern.ch:7999/garfield/garfieldpp.git $GARFIELD_HOME

or HTTPS access

git clone https://gitlab.cern.ch/garfield/garfieldpp.git $GARFIELD_HOME

To update the source code with the latest changes, run the following command from the
GARFIELD_HOME folder:

git pull

2.3. Building the project

Garfield++ uses the CMake build generator to create the actual build system that is used to
compile the binaries of the programs we want to build. CMake is a cross-platform scripting
language that allows one to define the rules to build and install a complex project and takes care
of generating the low-level files necessary for the build system of choice. On Linux systems that
build system typically defaults to the GNU Make program. We will therefore assume that GNU
Make is used to build Garfield++.

The process is divided in two phases. During the build phase, the source files will be used to
generate the necessary binaries, along with a large quantities of temporary files, used in the
intermediate phases of the build. In the install phase only the necessary files are copied to the
final destination.

First we will create a build directory, and move into it to execute the first phase. This can be
any folder on the user filesystem. For simplicity we will use a subfolder of the place where the
source code was downloaded.

mkdir $GARFIELD_HOME/build
cd build

Inside the build directory we can run CMake to generate the build system.

cmake $GARFIELD_HOME

The build can be customized in several ways through CMake by defining a set of internal variables
that modify the output accordingly. To set a new value for a CMake variable one can use the
-D<var>=<value> syntax at the command line. The most relevant parameters that a user may
want to customize are described below.

5See https://gitlab.cern.ch/help/gitlab-basics/create-your-ssh-keys.md for instructions how to create
and upload the SSH keys for GitLab.

https://gitlab.cern.ch/help/gitlab-basics/create-your-ssh-keys.md

9 Chapter 2. Getting started

Installation folder By default Garfield is installed in the folder pointed to by the environ-
ment variable GARFIELD_INSTALL or, if that variable is missing, in a subfolder of the
source directory, that is $GARFIELD_HOME/install. To install it elsewhere define the
CMAKE_INSTALL_PREFIX variable, using a similar command with an appropriate target
folder:

cmake -DCMAKE_INSTALL_PREFIX=/home/mygarfield $GARFIELD_HOME

Debug and optimization mode This is controlled by the CMake variable CMAKE_BUILD_TYPE
which can have one of the following values:

Release Enables all the compiler optimizations to achieve the best performance

Debug Disables all the compiler optimizations and add the debug symbols to the binary
to be able to use an external debugger on the code

RelWithDebInfo Enables all the compiler optimization but stores the debug symbols in
the final binaries. This increases the binary size and may reduce the performances

MinSizeRel Enables all the compiler optimization necessary to obtain the smaller exe-
cutable possible

By default Garfield++ is built in Release mode. To add the debugging symbol use the
following command before building

cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo $GARFIELD_HOME

Those variables and many other can be set through a textual or graphical user interface, ccmake
or cmake-gui respectively, that needs to be installed separately.

Once CMake has generated the build system, you can execute the following to compile and install
Garfield++.

make && make install

Once the installation is done, Garfield requires the definition of an environment variable named
HEED_DATABASE to identify the location of the Heed cross-section database, located in the subfolder
share/Heed/database of the installation path. Additionally, to build applications that make
use of Garfield it may be convenient to append the installation path to an environment variable
named CMAKE_PREFIX_PATH. To simplify all this, the build procedure generates a shell script,
named setupGarfield.sh, located in the subfolder share/Garfield of the installation path,
which correctly defines all those variables. You can append the execution of that script to your
shell initialization script (e. g. .bashrc for the Bash shell) to setup Garfield automatically.

After updating the source code you can run the make command from the build folder to update
the build. Sometimes it may be necessary to restart from a clean slate, in which case one can
remove the build folder completely and restart the procedures of this section.

2.4. Building an application

The recommended way to build a Garfield++-based C++ application is using CMake. Let us
consider as an example the program gem.C (see Sec. 2.6.2) which together with the corresponding

Chapter 2. Getting started 10

CMakeLists.txt can be found in the directory Examples/Gem of the source tree. As a starting
point, we assume that you have built Garfield++ using the instructions above and set up the
necessary environment variables.

• To keep the source tree clean, and since you will probably want to modify the program
according to your needs, it is a good idea to copy the folder to another location.

cp -r $GARFIELD_HOME/Examples/Gem .

• Create a build directory.

mkdir Gem/build; cd Gem/build

• Setup the environment.

source $GARFIELD_HOME/install/share/Garfield/setupGarfield.sh

• Run CMake,

cmake ..

followed by

make

• In addition to the executable (gem), the build folder should now also contain the field map
(*.lis) files which have been copied there during the CMake step.

• To run the application, type

./gem

2.5. Python

Thanks to PyROOT, the Garfield++ classes can also be used from Python. After building
the project and setting up the environment following the instructions above, one can load the
relevant libraries in the Python interpreter using

import ROOT
import Garfield

2.6. Examples

Section 2.6.1 discusses the calculation of transport parameters with Magboltz, the use of analytic
field calculation techniques, “macroscopic” simulation of electron and ion drift lines, and the
calculation of induced signals.

11 Chapter 2. Getting started

Microscopic transport of electrons and the use of finite element field maps are introduced in
Sec. 2.6.2.

Section 2.6.3 presents an example of the simulation of drift lines and induced signals in a silicon
sensor.

Further examples can be found on the webpage (http://garfieldpp.web.cern.ch/garfieldpp/
Examples) and in the directory Examples of the source tree.

2.6.1. Drift tube

In this example, we consider a drift tube with an outer diameter of 15mm and a wire diameter
of 50 µm, similar to the ATLAS small-diameter muon drift tubes (sMDTs).

Gas table

First, we prepare a table of transport parameters (drift velocity, diffusion coefficients, Townsend
coefficient, and attachment coefficient) as a function of the electric field E (and, in general, also
the magnetic field B as well as the angle between E and B). In this example, we use a gas
mixture of 93% argon and 7% carbon dioxide at a pressure of 3 atm and room temperature.

MediumMagboltz gas("ar", 93., "co2", 7.);
// Set temperature [K] and pressure [Torr].
gas.SetPressure(3 * 760.);
gas.SetTemperature(293.15);

We also have to specify the number of electric fields to be included in the table and the electric
field range to be covered. Here we use 20 field points between 100V/ cm and 100 kV/ cm with
logarithmic spacing.

gas.SetFieldGrid(100., 100.e3, 20, true);

Now we run Magboltz to generate a gas table for this grid. As input parameter we have to specify
the number of collisions (in multiples of 107) over which the electron is traced by Magboltz.

const int ncoll = 10;
gas.GenerateGasTable(ncoll);

This calculation will take a while, don’t panic. After the calculation is finished, we save the gas
table to a file for later use.

gas.WriteGasFile("ar_93_co2_7.gas");

Once we have saved the transport parameters to file we can skip the steps above, and simply
import the table in our program using

gas.LoadGasFile("ar_93_co2_7.gas");

In order to make sure the calculation of the gas table was successful, it is a good idea to plot, for
instance, the drift velocity as a function of the electric field.

http://garfieldpp.web.cern.ch/garfieldpp/Examples
http://garfieldpp.web.cern.ch/garfieldpp/Examples

Chapter 2. Getting started 12

ViewMedium mediumView(&gas);
mediumView.PlotElectronVelocity('e');

Electric Field

For calculating the electric field inside the tube, we use the class ComponentAnalyticField
which can handle (two-dimensional) arrangements of wires, planes and tubes.

ComponentAnalyticField cmp;

We first set the medium inside the active region.

cmp.SetMedium(&gas);

Next we add the elements defining the electric field, i.e. the wire (which we label “s”) and the
tube.

// Wire radius [cm]
const double rWire = 25.e-4;
// Outer radius of the tube [cm]
const double rTube = 0.71;
// Voltages
const double vWire = 2730.;
const double vTube = 0.;
// Add the wire in the centre.
cmp.AddWire(0, 0, 2 * rWire, vWire, "s");
// Add the tube.
cmp.AddTube(rTube, vTube, 0);

Finally we assemble a Sensor object which acts as an interface to the transport classes discussed
below.

// Calculate the electric field using the Component object cmp.
Sensor sensor(&cmp);
// Request signal calculation for the electrode named "s",
// using the weighting field provided by the Component object cmp.
sensor.AddElectrode(&cmp, "s");

We further need to set the time interval within which the signal is recorded and the granularity
(bin width). In this example, we use use 1000 bins with a width of 0.5 ns.

const double tstep = 0.5;
const double tmin = -0.5 * tstep;
const unsigned int nbins = 1000;
sensor.SetTimeWindow(tmin, tstep, nbins);

13 Chapter 2. Getting started

Drift lines from a track

We use Heed (Sec. 5.1) to simulate the ionisation produced by a charged particle crossing the
tube (a 170GeV muon in our example).

TrackHeed track(&sensor);
track.SetParticle("muon");
track.SetEnergy(170.e9);

The drift lines of the electrons created along the track are calculated using Runge-Kutta-Fehlberg
(RKF) integration, implemented in the class DriftLineRKF. This method uses the previously
computed tables of transport parameters to calculate drift lines and multiplication.

DriftLineRKF drift(&sensor);

Let us consider a track that passes at a distance of 3mm from the wire centre. After simulating
the passage of the charged particle, we loop over the “clusters” (i.e. the ionizing collisions of
the primary particle) along the track and calculate a drift line for each electron produced in the
cluster.

const double rTrack = 0.3;
const double x0 = rTrack;
const double y0 = -sqrt(rTube * rTube - rTrack * rTrack);
track.NewTrack(x0, y0, 0, 0, 0, 1, 0);
// Loop over the clusters along the track.
for (const auto& cluster : track.GetClusters()) {

// Loop over the electrons in the cluster.
for (const auto& electron : cluster.electrons) {
drift.DriftElectron(electron.x, electron.y, electron.z, electron.t);

}
}

As a check whether the simulation is doing something sensible, it can be useful to visualize the
drift lines. Before simulating the charged particle track and the electron drift lines, we have to
instruct TrackHeed and DriftLineRKF to pass the coordinates of the clusters and the points
along the drift line to a ViewDrift object which then takes care of plotting them.

// Create a canvas.
cD = new TCanvas("cD", "", 600, 600);
ViewDrift driftView;
driftView.SetCanvas(cD);
drift.EnablePlotting(&driftView);
track.EnablePlotting(&driftView);

We use the class ViewCell to draw the outline of the tube and the position of the wire on the
same plot as the drift lines.

ViewCell cellView(&cmp);
cellView.SetCanvas(cD);

After we’ve simulated all drift lines from a charged particle track, we create a plot using

Chapter 2. Getting started 14

cellView.Plot2d();
constexpr bool twod = true;
constexpr bool drawaxis = false;
driftView.Plot(twod, drawaxis);

and we plot the current induced on the wire by the drift lines simulated in the previous step.

TCanvas* cS = new TCanvas("cS", "", 600, 600);
sensor.PlotSignal("s", cS);

Ion tail

So far we have only considered the electron contribution to the induced signal. If we want to
include the contribution from the ions produced in the avalanche we need to import a table of
ion mobilities

gas.LoadIonMobility("IonMobility_Ar+_Ar.txt");

By default, DriftLineRKF will then include the ion tail in the simulation.

2.6.2. GEM

In this example, we will simulate the drift of electrons and ions in a standard GEM [40], which
consists of a 50 µm thick kapton foil coated on both sides with a 5 µm layer of copper, with
a hexagonal pattern of holes (outer hole diameter: 70 µm, inner hole diameter: 50 µm, pitch:
140 µm) etched into the foil.

Field map

As a first step, we need to calculate the electric field in the GEM. In this example, we use Ansys
[2] but the steps for importing field maps from other finite-element solvers like Elmer [15] or
Comsol [11] are very similar.

In the following we assume that the output files resulting from the Ansys run are located in the
current working directory. The initialisation of ComponentAnsys123 consists of

• loading the mesh (ELIST.lis, NLIST.lis), the list of nodal solutions (PRNSOL.lis), and
the material properties (MPLIST.lis);

• specifying the length unit of the values given in the .LIS files;

• setting the appropriate periodicities/symmetries.

ComponentAnsys123 fm;
// Load the field map.
fm.Initialise("ELIST.lis", "NLIST.lis", "MPLIST.lis", "PRNSOL.lis", "mm");
// Set the periodicities
fm.EnableMirrorPeriodicityX();
fm.EnableMirrorPeriodicityY();
// Print some information about the cell dimensions.
fm.PrintRange();

15 Chapter 2. Getting started

We need to apply mirror periodicity in 𝑥 and 𝑦 in ComponentAnsys123 since we had exploited
the symmetry of the geometry and modelled only half a hole in Ansys.

Using the class ViewField, we do a visual inspection of the field map to make sure it looks
sensible. We first make a plot of the potential along the hole axis (𝑧 axis).

ViewField fieldView(&fm);
// Plot the potential along the hole axis.
fieldView.PlotProfile(0., 0., 0.02, 0., 0., -0.02);

We also make a contour plot of the potential in the 𝑥 − 𝑧 plane.

const double pitch = 0.014;
// Set the normal vector (0, -1, 0) of the viewing plane.
fieldView.SetPlane(0., -1., 0., 0., 0., 0.);
fieldView.SetArea(-pitch / 2., -0.02, pitch / 2., 0.02);
fieldView.SetVoltageRange(-160., 160.);
fieldView.PlotContour();

Next we create a Sensor based on the field map component.

Sensor sensor(&fm);

Normally, particles are transported until they exit the mesh. To speed up the calculation we
restrict the drift region to −100μm < 𝑧 < +250μm.

sensor.SetArea(-5 * pitch, -5 * pitch, -0.01, 5 * pitch, 5 * pitch, 0.025);

Gas

We use a gas mixture of 80% argon and 20% CO2.

MediumMagboltz gas("ar", 80., "co2", 20.);
// Set temperature [K] and pressure [Torr].
gas.SetTemperature(293.15);
gas.SetPressure(760.);

Electron collision rates In this example, we will simulate electron avalanches using a “micro-
scopic” Monte Carlo method, based on the electron-atom/molecule cross-sections in the database
of the Magboltz program. As discussed in more detail in Sec. 6.3, the algorithm takes as input
the collision rates (as function of the electron’s kinetic energy) for each scattering mechanism that
can take place in the gas. The preparation of the tables of collision rates and the interpolation
in these tables is done by the class MediumMagboltz, which – as the name suggests – provides an
interface to Magboltz.

In MediumMagboltz the collision rates are stored on an evenly spaced energy grid. The max.
energy can be set by the user. For avalanche calculations, 50 – 200 eV is usually a reasonable
choice.

Chapter 2. Getting started 16

gas.SetMaxElectronEnergy(200.);
gas.Initialise();

Penning transfer Argon includes a number of excitation levels with an excitation energy
exceeding the ionisation potential of CO2 (13.78 eV). These excited states can contribute to
the gain, since (part of) the excitation energy can be transferred to a CO2 molecule through
collisions or by photo-ionisation.

In the simulation, this so-called Penning effect can be described in terms of a probability 𝑟 that
an excitation is converted to an ionising collision (Sec. 3.2.3).

// Penning transfer probability.
const double rPenning = 0.57;
// Mean distance from the point of excitation.
const double lambdaPenning = 0.;
gas.EnablePenningTransfer(rPenning, lambdaPenning, "ar");

Ion transport properties Unlike electrons, ions cannnot be tracked microscopically in Garfield++.
Moreover, there is no program like Magboltz that can compute the macroscopic transport prop-
erties (such as the drift velocity), so we have to provide these data ourselves. In this example,
we use the mobility of Ar+ ions in Ar as an approximation because there is no literature data
for drift in the mixture. Example files with mobility data for various pure gases are located in
the Data directory of the project source tree and are copied to the install directory during
installation. If you don’t provide a full path or if the mobility file is not in your current working
directory, MediumMagboltz will look for it in the subdirectory share/Garfield/Data of the
install folder.

gas.LoadIonMobility("IonMobility_Ar+_Ar.txt");

Associating the gas to a field map region In order to track a particle through the detector we
have to tell ComponentAnsys123 which field map material corresponds to which Medium. The
gas can be distinguished from the other materials (here: kapton and copper) by its dielectric
constant, in our case 𝜀 = 1.

const size_t nMaterials = fm.GetNumberOfMaterials();
for (size_t i = 0; i < nMaterials; ++i) {

const double eps = fm.GetPermittivity(i);
if (fabs(eps - 1.) < 1.e-3) fm.SetMedium(i, &gas);

}
// Print a list of the field map materials (for information).
fm.PrintMaterials();

Instead of iterating over the materials and retrieving the relative dielectric constant, we can also
use the helper function SetGas.

fm.SetGas(&gas);

17 Chapter 2. Getting started

Electron transport

Microscopic tracking is handled by the class AvalancheMicroscopic (Sec. 6.3).

AvalancheMicroscopic aval(&sensor);

We are now ready to simulate an electron avalanche in the GEM. We place the initial electron
200 µm above the centre of the GEM hole and set its initial energy to a typical energy in the
electric field of the drift gap.

// Initial position [cm] and starting time [ns]
double x0 = 0., y0 = 0., z0 = 0.02;
double t0 = 0.;
// Initial energy [eV]
double e0 = 0.1;
// Initial direction
// In case of a null vector, the initial direction is randomized.
double dx0 = 0., dy0 = 0., dz0 = 0.;
// Calculate an electron avalanche.
aval.AvalancheElectron(x0, y0, 0, t0, e0, dx0, dy0, dz0);

After the calculation, we can extract information such as the number of electrons/ions produced
in the avalanche and the start- and endpoints of all electron trajectories.

int ne, ni;
// Get the number of electrons and ions in the avalanche.
aval.GetAvalancheSize(ne, ni);
// Loop over the electrons in the avalanche.
for (const auto& electron : aval.GetElectrons()) {

// Initial position.
const auto& p0 = electron.path.front();
std::cout << "Electron started at ("

<< p0.x << ", " << p0.y << ", " << p0.z << ")\n";
// Final position.
const auto& p1 = electron.path.back();
std::cout << "Electron stopped at ("

<< p1.x << ", " << p1.y << ", " << p1.z << ")\n";
std::cout << "Status code: " << electron.status << "\n";

}

Ion transport For tracking the ions, we use the class AvalancheMC, which takes as input the
macroscopic drift velocity as function of the electric field and simulates drift lines using a Monte
Carlo technique (Sec. 6.2).

AvalancheMC drift(&sensor);
drift.SetDistanceSteps(2.e-4);

After simulating an electron avalanche, we loop over all the electron trajectories, and calculate
an ion drift line starting from the same initial point as the electron.

// Loop over the avalanche electrons.

Chapter 2. Getting started 18

for (const auto& electron : aval.GetElectrons()) {
const auto& p0 = electron.path[0];
drift.DriftIon(p0.x, p0.y, p0.z, p0.t);
// ...

}

We can subsequently retrieve the endpoint of the ion drift line using

const auto& p2 = drift.GetIons()[0].path.back()
std::cout << "Ion stopped at ("

<< p2.x << ", " << p2.y << ", " << p2.z << ").\n";

Visualizing the drift lines

To plot the electron and ion drift lines together with the geometry, we use the classes ViewDrift
and ViewFEMesh. When setting up the AvalancheMicroscopic and AvalancheMC objects, we
need to switch on the storage of the drift line points and attach a pointer to a ViewDrift
object.

ViewDrift driftView;
aval.EnablePlotting(&driftView);
drift.EnablePlotting(&driftView);

After having calculated the electron avalanche and ion drift lines, we create a plot using the
snippet of code below.

ViewFEMesh* meshView = new ViewFEMesh(&fm);
meshView->SetArea(-2 * pitch, -2 * pitch, -0.02,

2 * pitch, 2 * pitch, 0.02);
// x-z projection
meshView->SetPlane(0, -1, 0, 0, 0, 0);
meshView->SetFillMesh(true);
// Set the color of the kapton.
meshView->SetColor(2, kYellow + 3);
meshView->EnableAxes();
meshView->SetViewDrift(&driftView);
meshView->Plot();

2.6.3. Silicon sensor

In this example, we will simulate the signal in a 100 µm thick planar silicon sensor due to the
passage of a charged particle. We will adopt a coordinate system where the back side of the
sensor is at 𝑦 = 0 and the front side (i.e. the strip or pixel side) is at 𝑦 = 100 µm.

Transport properties

We start by creating a MediumSilicon object, which provides the transport parameters (e.g.
drift velocity and diffusion coefficients) of electrons and holes as function of the electric field (and,
in general, also the magnetic field, but we will assume that it is zero in this example).

19 Chapter 2. Getting started

MediumSilicon si;
// Set the temperature [K].
si.SetTemperature(293.15);

Unless the user overrides the default behaviour (by providing a table of velocities at different
electric fields), MediumSilicon calculates the drift velocities according to analytic parameteriza-
tions. A description of the mobility models is given in Sec. 3.3.1. In this example, we will use
the default parameterizations, which correspond to the default models in Sentaurus Device [47].
The diffusion coefficients are calculated according to the Einstein relation.

Electric field

The active volume in our example is a box with a length of 𝑑 = 100µm along 𝑦, centred at
𝑦 = 50µm, and made of silicon. For accurate calculations of the electric field in a segmented
silicon sensor, one normally uses TCAD device simulation programs such as Synopsys Sentaurus
Device [47]. In the present example, we will follow a simplified approach and approximate the
electric field by that of an overdepleted pad sensor. In that case, the 𝑥 and 𝑧 components of the
electric field vanish, and the 𝑦 component varies linearly between

𝐸𝑦 =
𝑉bias − 𝑉dep

𝑑

at the back side of the sensor (𝑦 = 0) and

𝐸𝑦 =
𝑉bias + 𝑉dep

𝑑

at the front side of the sensor (𝑦 = 𝑑), where 𝑉dep is the depletion voltage of the sensor and 𝑉bias
is the applied bias voltage. In this example, we will use 𝑉dep = −20V and 𝑉bias = −50V.

In order to use this expression for the electric field in our simulation, we write a lambda
expression

// Depletion voltage [V]
constexpr double vdep = -20.;
auto eLinear = [d,vbias,vdep](const double /*x*/, const double y,

const double /*z*/,
double& ex, double& ey, double& ez) {

ex = ez = 0.;
ey = (vbias - vdep) / d + 2 * y * vdep / (d * d);

};

and set up a ComponentUser object which delegates the calculation of the electric field to this
function.

ComponentUser linearField;
linearField.SetArea(-2 * d, 0., -2 * d, 2 * d, d, 2 * d);
linearField.SetMedium(&si);
linearField.SetElectricField(eLinear);

A pointer to this Component is then passed to a Sensor which acts as an interface to the transport
classes.

Chapter 2. Getting started 20

Sensor sensor;
sensor.AddComponent(&linearField);

Weighting field

For signal simulations, we need to know not only the actual electric field in the sensor, but
also the weighting field of the electrode for which we want to calculate the induced current
(Chapter 7).

In this example, we will use an analytic expression for the weighting field of a strip, as implemented
in the class ComponentAnalyticField. We thus create a ComponentAnalyticField object,
define the equipotential planes (𝑦 = 0 and 𝑦 = 𝑑) and set the voltages at these planes to ground
and 𝑉 = 𝑉bias. We will not use this class to calculate the “real” electric field in the sensor though,
so the voltage settings don’t actually matter for our purposes.

ComponentAnalyticField wField;
wField.SetMedium(&si);
wField.AddPlaneY(0, vbias, "back");
wField.AddPlaneY(d, 0, "front");

We now define a strip (55 µm width, centred at 𝑥 = 0) on the front side of the sensor.

constexpr double pitch = 55.e-4;
constexpr double halfpitch = 0.5 * pitch;
wField.AddStripOnPlaneY('z', d, -halfpitch, halfpitch, "strip");

The last argument of the above function is a label, which we will use later to identify the signal
induced on the strip. Similarly we could have set up the weighting field of a pixel electrode.

wField.AddPixelOnPlaneY(d, -halfpitch, halfpitch, -halfpitch, halfpitch, "pixel");

Finally, we need to instruct the Sensor to use the strip weighting field we just prepared for
computing the induced signal

// Request signal calculation for the electrode named "strip",
// using the weighting field provided by the Component object wField.
sensor.AddElectrode(&wField, "strip");

and we need to set the granularity with which we want to record the signal (in our example:
1000 bins between 0 and 10 ns).

// Set the time bins.
const unsigned int nTimeBins = 1000;
const double tmin = 0.;
const double tmax = 10.;
const double tstep = (tmax - tmin) / nTimeBins;
sensor.SetTimeWindow(tmin, tstep, nTimeBins);

21 Chapter 2. Getting started

Primary ionization and charge carrier transport

We use Heed (Sec. 5.1) to simulate the electron/hole pairs produced by a 180GeV/ 𝑐 charged
pion traversing the sensor.

TrackHeed track(&sensor);
// Set the particle type and momentum [eV/c].
track.SetParticle("pion");
track.SetMomentum(180.e9);

For transporting the electrons and holes, we use the class AvalancheMC. When setting up the
AvalancheMC object, we need to set the step size used for the drift line calculation to a reasonable
value. In this example, we use steps of 1 µm. This means that at each step, the electron/hole
will be propagated by 1 µm in the direction of the drift velocity at the local field, followed by a
random step based on the diffusion coefficient.

AvalancheMC drift(&sensor);
// Set the step size [cm].
drift.SetDistanceSteps(1.e-4);

We are now ready to run the simulation. In the snippet below, we simulate a perpendicularly
incident charged particle track passing through the centre of the strip (𝑥 = 0), loop over the
electron/hole pairs produced by the particle, and simulate a drift line for each electron and
hole.

double x0 = 0., y0 = 0., z0 = 0., t0 = 0.;
double dx = 0., dy = 1., dz = 0.;
track.NewTrack(x0, y0, z0, t0, dx, dy, dz);
// Retrieve the clusters along the track.
for (const auto& cluster : track.GetClusters()) {

// Loop over the electrons in the cluster.
for (const auto& electron : cluster.electrons) {
// Simulate the electron and hole drift lines.
drift.DriftElectron(electron.x, electron.y, electron.z, electron.t);
drift.DriftHole(electron.x, electron.y, electron.z, electron.t);

}
}

To check whether the results are sensible, it can be instructive to visualize the drift lines using
the class ViewDrift.

ViewDrift driftView;
driftView.SetArea(-0.5 * d, 0, -0.5 * d, 0.5 * d, d, 0.5 * d);
track.EnablePlotting(&driftView);
drift.EnablePlotting(&driftView);

With the plotting option switched on, AvalancheMC will pass the coordinates of all drift line
points to a ViewDrift object. After having simulated all drift lines from a track, we can create
a plot using

constexpr bool twod = true;
driftView.Plot(twod);

Chapter 2. Getting started 22

Plotting the drift lines can slow down the execution time quite a bit, so it is advisable to switch
it off when simulating a large number of tracks.

Retrieving the signal

After having simulated the charge carrier drift lines, we can plot the induced current.

TCanvas* cSignal = new TCanvas("cSignal", "", 600, 600);
sensor.PlotSignal("strip", cSignal);

To post-process the induced current pulse, one can convolute it with a transfer function that
describes the response of the front-end electronics.

Often it can also be useful to save the signal to a file. An example for doing so is given in the
code snippet below.

std::ofstream outfile;
outfile.open("signal.txt", std::ios::out);
for (unsigned int i = 0; i < nTimeBins; ++i) {

const double t = (i + 0.5) * tstep;
const double f = sensor.GetSignal(label, i);
const double fe = sensor.GetElectronSignal(label, i);
const double fh = sensor.GetIonSignal(label, i);
outfile << t << " " << f << " " << fe << " " << fh << "\n";

}

3. Media

Media are derived from the abstract base class Medium.

The name (identifier) of a medium can be read using the function

const std::string& GetName() const;

For compound media (e. g. gas mixtures), the identifiers and fractions of the constituents are
available via

unsigned int GetNumberOfComponents();
void GetComponent(const unsigned int i, std::string& label, double& f);

3.1. Transport parameters

Medium classes provide the following functions for calculating macroscopic electron transport
parameters as a function of the electric and magnetic field:

bool ElectronVelocity(const double ex, const double ey, const double ez,
const double bx, const double by, const double bz,
double& vx, double& vy, double& vz);

bool ElectronDiffusion(const double ex, const double ey, const double ez,
const double bx, const double by, const double bz,
double& dl, double& dt);

bool ElectronTownsend(const double ex, const double ey, const double ez,
const double bx, const double by, const double bz,
double& alpha);

bool ElectronAttachment(const double ex, const double ey, const double ez,
const double bx, const double by, const double bz,
double& eta);

ex, ey, ez electric field (in V / cm)

bx, by, bz magnetic field (in T)

vx, vy, vz drift velocity (in cm/ns)

dl, dt longitudinal and transverse diffusion coefficients (in
√
cm)

alpha Townsend coefficient (in cm−1)

eta attachment coefficient (in cm−1)

The above functions return true if the respective parameter is available at the requested
field.

23

Chapter 3. Media 24

Table 3.1. Pressure scaling relations for gases.

transport parameter scaling

drift velocity 𝑣 vs. 𝐸/𝑝
diffusion coefficients 𝜎√𝑝 vs. 𝐸/𝑝
Townsend coefficient 𝛼/𝑝 vs. 𝐸/𝑝
attachment coefficient 𝜂/𝑝 vs. 𝐸/𝑝

Analogous functions are available for holes (albeit of course not meaningful for gases), and also
for ions (except for the Townsend and attachment coefficients).

The components of the drift velocity are stored in a right-handed coordinate system that is
aligned with the electric and magnetic field vectors. More precisely, the axes are along

• the electric field E,

• the component of the magnetic field B transverse to E, B𝑡 = (E × B) × E,

• E × B.

The longitudinal diffusion is measured along E. The transverse diffusion is the average of the
diffusion coefficients along the two remaining axes.

3.1.1. Transport parameter tables

The transport parameters can either be stored in a one-dimensional table (as a function of the
electric field only) or in a three-dimensional table (as a function of E, B, and the angle 𝜃 between
E and B). If only a one-dimensional table is present and the drift velocity at 𝐵 ≠ 0 is requested,
the Langevin equation [8]

v = 𝜇
1 + 𝜇2𝐵2 (E + 𝜇E × B + 𝜇2B (E ⋅ B)) , 𝜇 = 𝑣/𝐸.

is used.

All transport parameters share the same grid of electric fields, magnetic fields, and angles. By
default, the field and angular ranges are

• 20 electric field points between 100 V/ cm and 100 kV/ cm, with logarithmic spacing

• B = 0, 𝜃 = 𝜋/2

For specifying the field grid, two functions are available:

void SetFieldGrid(double emin, double emax, const size_t ne, bool logE,
double bmin, double bmax, const size_t nb,
double amin, double amax, const size_t na);

void SetFieldGrid(const std::vector<double>& efields,
const std::vector<double>& bfields,
const std::vector<double>& angles);

emin, emax min. and max. value of the electric field range to be covered by the tables

ne number of electric field grid points

25 Chapter 3. Media

logE flag specifying whether the 𝐸-field grid points should be evenly spaced (false), or loga-
rithmically spaced (true)

bmin, bmax, ne magnetic field range and number of values

amin, amax, na angular range and number of angles

efields, bfields, angles lists of 𝐸, 𝐵, and 𝜃 (in ascending order)

Electric fields have to be supplied in V / cm, magnetic fields in Tesla, and angles in radian.

The electron drift velocity components at a specific point in the table can be set and retrieved
using

bool SetElectronVelocityE(const size_t ie, const size_t ib,
const size_t ia, const double v);

bool SetElectronVelocityB(const size_t ie, const size_t ib,
const size_t ia, const double v);

bool SetElectronVelocityExB(const size_t ie, const size_t ib,
const size_t ia, const double v);

bool GetElectronVelocityE(const size_t ie, const size_t ib,
const size_t ia, double& v);

bool GetElectronVelocityB(const size_t ie, const size_t ib,
const size_t ia, double& v);

bool GetElectronVelocityExB(const size_t ie, const size_t ib,
const size_t ia, double& v);

ie index in the list of electric fields,

ib index in the list of magnetic fields,

ia index in the list of angles,

v velocity

Analogous functions are available for the other transport parameters. For the Townsend coefficient
𝛼 and the attachment coefficient 𝜂, the logarithms ln𝛼, ln 𝜂 and not the actual values are stored
in the tables.

The gas tables are interpolated using Newton polynomials. The order of the interpolation
polynomials can be set by means of

void SetInterpolationMethodVelocity(const unsigned int intrp);
void SetInterpolationMethodDiffusion(const unsigned int intrp);
void SetInterpolationMethodTownsend(const unsigned int intrp);
void SetInterpolationMethodAttachment(const unsigned int intrp);
void SetInterpolationMethodIonMobility(const unsigned int intrp);
void SetInterpolationMethodIonDissociation(const unsigned int intrp);

intrp order of the interpolation polynomial

The interpolation order must be between 1 and the smallest of the two numbers: 10 and number
of table entries - 1. Orders larger than 2 are not recommended.

The method for extrapolating to 𝐸 values smaller and larger than those present in the table can
be set using

Chapter 3. Media 26

void SetExtrapolationMethodVelocity(const std::string extrLow,
const std::string extrHigh);

extrLow, extrHigh extrapolation method to be used (“constant”, “exponential”, or “linear”)

Similar functions are available for the other transport parameters. The extrapolation method set
using this function has no effect on extrapolation in three-dimensional tables. In such tables,
polynomial extrapolation is performed with the same order as for the interpolation.

The default settings are

• quadratic interpolation,

• constant extrapolation towards low values,

• linear extrapolation towards high values.

3.1.2. Visualization

For plotting transport parameters as function of the electric field, the member functions

void PlotVelocity(const std::string& carriers, TPad* pad);
void PlotDiffusion(const std::string& carriers, TPad* pad);
void PlotTownsend(const std::string& carriers, TPad* pad);
void PlotAttachment(const std::string& carriers, TPad* pad);
void PlotAlphaEta(const std::string& carriers, TPad* pad);

of the class Medium can be used, where the option string carriers indicates the charge carriers
("e": electrons, "i": ions, "h": holes) for which to plot the requested transport parameters. The
following example plots the drift velocity of electrons and holes in silicon as well as the Townsend
and attachment coefficients.

MediumSilicon si;
TCanvas* c1 = new TCanvas("c1", "", 600, 600);
si.PlotVelocity("eh", c1);
TCanvas* c2 = new TCanvas("c2", "", 600, 600);
si.PlotAlphaEta("eh", c2);

Internally, the above functions use the class ViewMedium. Using ViewMedium directly, another
way to produce the first plot in the above example would be:

MediumSilicon si;
ViewMedium view(&si);
view.PlotVelocity("eh", 'e');

The second argument (of type char) of the function ViewMedium::PlotVelocity indicates the
quantity to plot on the 𝑥-axis. Valid options are 'e' (electric field), 'b' (magnetic field) and
'a' (angle between electric and magnetic field).

By default, ViewMedium will try to determine the range of the 𝑥 axis based on the grid of electric
fields, magnetic fields, and angles, and the range of the 𝑦 axis based on the minima and maxima
of the function to be plotted. This feature can be switched on or off using the functions

27 Chapter 3. Media

void EnableAutoRangeX(const bool on = true);
void EnableAutoRangeY(const bool on = true);

The ranges can be set explicitly using

void SetRangeE(const double emin, const double emax, const bool logscale);
void SetRangeB(const double bmin, const double bmax, const bool logscale);
void SetRangeA(const double amin, const double amax, const bool logscale);
void SetRangeY(const double ymin, const double ymax, const bool logscale);

When making a plot as function of the electric field, the magnetic field and angle can be set
using

void SetMagneticField(const double bfield);
void SetAngle(const double angle);

Similarly, the electric field to be used when making a plot as function of magnetic field or angle
can be set using

void SetElectricField(const double efield);

The (ROOT) colours with which to draw the graphs/curves and the labels to be used to identify
them can be customized using

void SetLabels(const std::vector<std::string>& labels);
void SetColours(const std::vector<short>& cols);

If the function

void EnableExport(const std::string& txtfile);

txtfile name of the output text file

is called before one of the Plot.. functions, the plot data points will be saved to a text file.

3.2. Gases

There are currently two classes implemented that can be used for the description of gaseous
media: MediumGas and its daughter class MediumMagboltz. While MediumGas deals only with the
interpolation of gas tables and the import of gas files, MediumMagboltz – owing to an interface to
the Magboltz program [7] – can be used for the calculation of transport parameters. In addition,
the latter class provides access to the electron-molecule scattering cross-sections used in Magboltz
and is thus suitable for microscopic tracking (chapter 6).

The composition of the gas mixture is specified using

bool SetComposition(const std::string& gas1, const double f1 = 1.,
const std::string& gas2 = "", const double f2 = 0.,
const std::string& gas3 = "", const double f3 = 0.,

Chapter 3. Media 28

const std::string& gas4 = "", const double f4 = 0.,
const std::string& gas5 = "", const double f5 = 0.,
const std::string& gas6 = "", const double f6 = 0.);

gas1, …, gas6 identifier of the molecule/atom

f1, …, f6 number fraction of the respective molecule/atom

A valid gas mixture comprises at least one and at most six different species.

The function

void PrintGases();

prints out a list of the available gases and their identifiers (see also Table B.1).

The fractions have to be strictly positive and may add up to any non-zero value; internally they
will be normalized to one.

The gas density is specified in terms of pressure (in Torr) and temperature (in K)

void SetPressure(const double p);
void SetTemperature(const double t);

and calculated using the ideal gas law.

In the following example the gas mixture is set to Ar/CH4 (80/20) at atmospheric pressure and
20∘ C.

MediumMagboltz gas;
// Set the composition
gas.SetComposition("ar", 80., "ch4", 20.);
gas.SetTemperature(293.15);
gas.SetPressure(760.);

The gas composition can also be specified in the constructor of MediumMagboltz.

MediumMagboltz gas("ar", 80., "ch4", 20.);
gas.SetTemperature(293.15);
gas.SetPressure(760.);

The function

void PrintGas();

prints information about the present transport parameter tables and cross-section terms (if
available).

3.2.1. 𝑊 values and Fano factors

MediumGas has default settings for the 𝑊 value (average energy to create an electron-ion pair)
and the Fano factor of each gas available in Magboltz. Where available, measurements of the 𝑊

29 Chapter 3. Media

value reported in Refs. [4, 33, 29] and measurements of the Fano factor reported in Refs. [3, 45,
29] were used.

For gases for which there no experimental data could be found in the literature, the 𝑊 values
were calculated based on the set of cross-sections implemented in Magboltz and the Fano factor
was calculated using the empirical relation [18]

𝐹 = 0.188𝑊
𝐼

− 0.15

where 𝐼 is the ionisation potential of the gas.

3.2.2. Ion transport

The Data directory of the project includes a number of text files (e. g. IonMobility_Ar+_Ar.txt
for Ar+ ions in argon) with ion mobility data. When building the project, these files are copied
to the folder share/Garfield/Data/ of the install directory. More precisely, the files contain a
table of reduced electric fields 𝐸/𝑁 and reduced mobilities. The reduced electric fields are given
in units of Td1 (Townsend) and the mobility values in cm2 V−1 s−1. Mobility files for positive
ions can be imported using

bool MediumGas::LoadIonMobility(const std::string& filename,
const bool quiet = false);

filename path and filename of the mobility file

Extensive compilations of ion mobilities and diffusion coefficients can be found in Refs. [12, 13,
14, 49].

Analogously, mobility data for negative ions can be imported using

bool LoadNegativeIonMobility(const std::string& filename,
const bool quiet = false);

3.2.3. Magboltz

Magboltz, written by Steve Biagi, is a program for the calculation of electron transport properties
in gas mixtures using semi-classical Monte Carlo simulation [7]. It includes a database of
electron-atom/molecule cross-sections for a large number of detection gases.

The function

void GenerateGasTable(const int numCollisions, const bool verbose);

runs Magboltz for all values of E, B, and 𝜃 included in the current field grid.

In addition to the transport parameters, this function also retrieves the rates calculated by
Magboltz for each excitation and ionisation level, and stores them in the gas table. These can be
used later to adjust the Townsend coefficient based on the Penning transfer probabilities set by
the user.

11 Td = 10−17 V cm2

Chapter 3. Media 30

By default, the max. energy of the cross-section table is chosen automatically by Magboltz. This
feature can be enabled or disabled using

void EnableAutoEnergyLimit(const bool on = true);

If it is switched off, the program uses the upper energy limit set using

bool SetMaxElectronEnergy(const double e);

For inelastic gases, setting nColl = 2 … 5 should give an accuracy of about 1%. An accuracy
better than 0.5% can be achieved by nColl > 10. For pure elastic gases such as Ar, nColl should
be at least 10.

Recent versions of Magboltz allow the thermal motion of the gas atoms/molecules to be taken
into account in the simulation. This feature can be enabled or disabled using

void EnableThermalMotion(const bool on);

By default the option is switched off, i. e. the gas is assumed to be at 0K.

Electron transport parameter tables can be saved to file and read from file by means of

bool WriteGasFile(const std::string& filename);
bool LoadGasFile(const std::string& filename);

The format of the gas file used in Garfield++ is compatible with the one used in Garfield 9.

Gas files for the same gas composition and the same temperature and pressure can be merged
using

bool MergeGasFile(const std::string& filename, const bool replaceOld);

filename name of the gas file to be loaded and merged with the present gas table,

replaceOld flag indicating whether new (replaceOld = true) or existing values should be used
in case of overlaps between the two tables.

Suppose we have two gas files for Ar/CO2, one for a 𝐵 field of 1T and one for 𝐵 = 2T. We can
combine the two tables with the following snippet of code.

MediumMagboltz gas;
gas.LoadGasFile("ar_co2_1T.gas");
gas.MergeGasFile("ar_co2_2T.gas");
// Save the merged table.
gas.WriteGasFile("ar_co2_merged.gas");

Scattering rates

As a prerequisite for “microscopic tracking” a table of the electron scattering rates (based on the
electron-atom/molecule cross-sections included in the Magboltz database) for the current gas
mixture and density needs to be prepared. This can be done using the function

31 Chapter 3. Media

Table 3.2. Classification of electron collision processes.

collision type index

elastic collision 0
ionisation 1
attachment 2
inelastic collision 3
excitation 4
superelastic collision 5
virtual (“null”) collision 6

bool Initialise(const bool verbose);

If the flag verbose is set to true, some information (such as gas properties, and collision rates
at selected energies) is printed during the initialisation.

If

void EnableCrossSectionOutput();

is called prior to Initialise, a table of the cross-sections (as retrieved from Magboltz) is written
to a file cs.txt in the current working directory.

By default, the table of scattering rates extends from 0 to 40 eV. The max. energy to be included
in the table can be set using

SetMaxElectronEnergy(const double e);

e max. electron energy (in eV).

Up to an upper limit of 400 eV, equidistant energy steps are used. If the max. energy exceeds
this value, logarithmically spaced energy steps are used for the high-energy part (> 400 eV) of
the cross-section table.

The parameters of the cross-section terms in the present gas mixture can be retrieved via

int GetNumberOfLevels();
bool GetLevel(const unsigned int i, int& ngas, int& type, std::string& descr, double& e);

i index of the cross-section term

ngas index of the gas in the mixture

type classification of the cross-section term (see Table 3.2)

descr description of the cross-section term (from Magboltz)

e energy loss

It is sometimes useful to know the frequency with which individual levels are excited in an
avalanche (or along a drift line). For this purpose, MediumMagboltz keeps track of the number

Chapter 3. Media 32

of times the individual levels are sampled in ElectronCollision. These counters are accessible
through the functions

unsigned int GetNumberOfElectronCollisions();
unsigned int GetNumberOfElectronCollisions(int& nElastic, int& nIonising,

int& nAttachment, int& nInelastic,
int& nExcitation, int& nSuperelastic);

unsigned int GetNumberOfElectronCollisions(const unsigned int level);

The first function returns total number of electron collisions since the last reset. The second
function additionally provides the number of collisions of each cross-section category (elastic,
ionising etc.). The third function returns the number of collisions for a specific cross-section
term. The counters can be reset using

void ResetCollisionCounters();

Excitation transfer

Penning transfer can be taken into account in terms of a transfer efficiency 𝑟𝑖, i. e. the probability
for an excited level 𝑖 with an excitation energy 𝜖𝑖 exceeding the ionisation potential 𝜖ion of the
mixture to be “converted” to an ionisation. The simulation of Penning transfer can be switched
on/off using

void EnablePenningTransfer();
void EnablePenningTransfer(const double r, const double lambda,

std::string gasname);
void EnablePenningTransfer(const double r, const double lambda);

r value of the transfer efficiency

lambda distance characterizing the spatial extent of Penning transfers; except for special studies,
this number should be set to zero

gasname name of the gas the excitation levels of which are to be assigned the specified transfer
efficiency

The first function, which takes no arguments, calculates the Penning transfer probability for the
current gas mixture using pre-implemented parameterisations taken from literature [39, 37, 38,
36], if available.

The second function sets the Penning transfer probability for a specific gas component in the
mixture.

The third function (without the gasname parameter) activates Penning transfer globally for all
gases in the mixture. Note that 𝑟 is an average transfer efficiency, it is assumed to be the same
for all energetically eligible levels (𝜖𝑖 > 𝜖ion).

Penning transfer can be switched off, globally or for a specific component, using

void DisablePenningTransfer();
void DisablePenningTransfer(std::string gasname);

33 Chapter 3. Media

If the gas table includes excitation and ionisation rates as function of the electric and magnetic
fields, the Townsend coefficient is updated accordingly when calling EnablePenningTransfer (or
DisablePenningTransfer). More precisely, the adjusted Townsend coefficient is given by

𝛼 = 𝛼0
∑𝑖 𝑟exc,𝑖 + ∑𝑖 𝑟ion,𝑖

∑𝑖 𝑟ion,𝑖
,

where 𝛼0 is the Townsend coefficient calculated without Penning transfers, 𝑟exc,𝑖 is the rate of an
excited level 𝑖 with an excitation energy above the ionisation potential of the gas mixture, and
𝑟ion,𝑖 is the rate of an ionization level 𝑖.

Chapter 3. Media 34

Table 3.3. Lattice mobility parameter values.

electrons holes
𝜇𝐿 [10−6 cm2 V−1 ns−1] 𝛽 𝜇𝐿 [10−6 cm2 V−1 ns−1] 𝛽

Sentaurus [19] 1.417 −2.5 0.4705 −2.5
Minimos [41] 1.43 −2.0 0.46 −2.18
Reggiani [27] 1.32 −2.0 0.46 −2.2

3.3. Semiconductors

3.3.1. Silicon

Like for all Medium classes, users have the possibility to specify the transport parameters in
tabulated form as function of electric field, magnetic field, and angle. If no such tables have
been entered, MediumSilicon calculates the electron and hole transport parameters based on
empirical parameterizations (as used, for instance, in device simulation programs). Several
mobility models are implemented. For the mobility 𝜇0 at low electric fields, the following options
are available:

• Using

void SetLowFieldMobility(const double mue, const double mh);

mue electron mobility (in cm2/(V ns))

muh hole mobility (in cm2/(V ns))

the values of low-field electron and hole mobilities can be specified explicitly by the user.

• The following functions select the model to be used for the mobility due to phonon scattering:

void SetLatticeMobilityModelMinimos();
void SetLatticeMobilityModelSentaurus();
void SetLatticeMobilityModelReggiani();

In all cases, the dependence of the lattice mobility 𝜇𝐿 on the temperature 𝑇 is described by

𝜇𝐿 (𝑇) = 𝜇𝐿 (𝑇0) (𝑇
𝑇0

)
𝛽

, 𝑇0 = 300 K. (3.1)

The values of the parameters 𝜇𝐿 (𝑇0) and 𝛽 used in the different models are shown in
Table 3.3. By default, the “Sentaurus” model is activated.

• The parameterization to be used for modelling the impact of doping on the mobility is
specified using

void SetDopingMobilityModelMinimos();
void SetDopingMobilityModelMasetti();

35 Chapter 3. Media

The first function activates the model used in Minimos 6.1 (see Ref. [41]). Using the second
function the model described in Ref. [22] is activated (default setting).

For modelling the velocity as function of the electric field, the following options are available:

• The method for calculating the high-field saturation velocities can be set using

void SetSaturationVelocity(const double vsate, const double vsath);
void SetSaturationVelocityModelMinimos();
void SetSaturationVelocityModelCanali();
void SetSaturationVelocityModelReggiani();

The first function sets user-defined saturation velocities (in cm/ns) for electrons and holes.
The other functions activate different parameterizations for the saturation velocity as
function of temperature. In the Canali model [10], which is activated by default,

𝑣𝑒
sat = 0.0107 (𝑇0

𝑇
)

0.87
cm/ns,

𝑣ℎ
sat = 0.00837 (𝑇0

𝑇
)

0.52
cm/ns,

where 𝑇0 = 300 K. The expressions for the other two implemented models can be found in
Refs. [27, 31].

• The parameterization of the mobility as function of the electric field to be used can be
selected using

void SetHighFieldMobilityModelMinimos();
void SetHighFieldMobilityModelCanali();
void SetHighFieldMobilityModelReggiani();
void SetHighFieldMobilityModelConstant();

The last function requests a constant mobility (i. e. linear dependence of the velocity on the
electric field). The models activated by the other functions used the following expressions

𝜇𝑒 (𝐸) = 2𝜇𝑒
0

1 + √1 + (2𝜇𝑒
0𝐸

𝑣𝑒
sat

)
2

, 𝜇ℎ (𝐸) = 𝜇ℎ
0

1 + 𝜇0
𝑣ℎ

sat

, (Minimos)

𝜇𝑒,ℎ (𝐸) =
𝜇𝑒,ℎ

0

(1 + (𝜇𝑒,ℎ
0 𝐸

𝑣sat𝑒,ℎ
)

𝛽𝑒,ℎ

)
1

𝛽𝑒,ℎ
, (Canali [10])

𝜇𝑒 (𝐸) = 𝜇𝑒
0

(1 + (𝜇𝑒
0𝐸

𝑣𝑒
sat

)
3/2

)
2/3 , 𝜇ℎ (𝐸) = 𝜇ℎ

0

(1 + (𝜇ℎ
0 𝐸

𝑣ℎ
sat

)
2
)

1/2 , (Reggiani [27])

By default, the Canali model is used.

For the impact ionization coefficient, the user has currently the choice between the models of
Grant [17], van Overstraeten and de Man [28], Okuto and Crowell [26], and Massey [23].

void SetImpactIonisationModelGrant();
void SetImpactIonisationModelVanOverstraetenDeMan();

Chapter 3. Media 36

void SetImpactIonisationModelMassey();
void SetImpactIonisationModelOkutoCrowell();

By default, the model by van Overstraeten and de Man is used.

3.3.2. Gallium arsenide

By default, MediumGaAs uses Eq. (3.1) for calculating the low-field lattice mobility, with

𝜇𝐿 (𝑇 = 300K) = 8 × 10−6 cm2 V−1 ns−1, 𝛽 = −1

for electrons and
𝜇𝐿 (𝑇 = 300K) = 0.4 × 10−6 cm2 V−1 ns−1, 𝛽 = −2.1

for holes. Alternatively, the low-field mobilities can be set explicitly using

SetLowFieldMobility(const double mue, const double muh);

For the dependence of the mobility on the electric field 𝐸, the parameterizations [5]

𝜇𝑒 (𝐸) =
𝜇𝑒

0 + 𝑣sat
𝐸 (𝐸

𝐸𝑐
)

4

1 + (𝐸
𝐸𝑐

)
4 , 𝜇ℎ (𝐸) =

𝜇ℎ
0 + 𝑣sat

𝐸𝑐

1 + 𝐸
𝐸𝑐

, 𝐸𝑐 = 4000V / cm

are used, and the saturation velocity is calculated using

𝑣𝑒,ℎ
sat = 1.13 × 10−2 − 3.6 × 10−3 (𝑇

𝑇0
) cm /ns.

The Townsend (impact ionization) coefficient as a function of the electric field 𝐸 is calculated
using

𝛼𝑒 = 𝑎 exp(− (𝑏
𝐸

)
1.75

) , 𝛼ℎ = 𝑎 exp(− (𝑏
𝐸

)
1.82

) .

3.3.3. Diamond

Unless the low-field mobility values are set explicitly by the user, MediumDiamond calculates
them using

𝜇0 (𝑇) = (𝑇
𝑇0

)
−1.5

𝜇0 (𝑇0) ,

where 𝑇0 = 300K and 𝜇0 (𝑇0) = 4.551 × 10−6 cm2 V−1 ns−1 for electrons and 𝜇0 (𝑇0) = 2.750 ×
10−6 cm2 V−1 ns−1 for holes [30]. The mobility as function of the electric field 𝐸 is calculated
using

𝜇 (𝐸) = 𝜇0

1 + 𝜇0𝐸
𝑣sat

with default values of 𝑣sat = 2.6 × 10−2 cm/ns for electrons and 𝑣sat = 1.6 × 10−2 cm/ns for
holes. These default values can be overriden using

void SetLowFieldMobility(const double mue, const double muh);
void SetSaturationVelocity(const double vsate, const double vsath);

4. Components

The calculation of electric fields is done by classes derived from the abstract base class Component.
The key functions, used internally in the classes for simulating charge transport, are

void ElectricField(const double x, const double y, const double z,
double& ex, double& ey, double& ez,
Medium*& m, int& status);

void ElectricField(const double x, const double y, const double z,
double& ex, double& ey, double& ez, double& v);

Medium* GetMedium(const double& x, const double& y, const double& z);

x, y, z position where the electric field (medium) is to be determined

ex, ey, ez, v electric field and potential at the given position

m pointer to the medium at the given position; if there is no medium at this location, a null
pointer is returned

status status flag indicating where the point is located (see Table 4.1)

To retrieve only the electrostatic potential, the function

double ElectricPotential(const double x, const double y, const double z);

can be used, and the function

std::array<double, 3> ElectricField(const double x, const double y, const double z);

returns the three components of the electric field.

4.1. Defining the geometry

As mentioned above, the purpose of Component classes is to provide, for a given location, the
electric (and magnetic) field and a pointer to the Medium object (if available). For the latter

Table 4.1. Status flags for electric fields.

value meaning

0 inside a drift medium
> 0 inside a wire
-1 …-4 on the side of a plane where no wires are
-5 inside the mesh, but not in a drift medium
-6 outside the mesh

37

Chapter 4. Components 38

task, it is obviously necessary to specify the geometry of the device. In case of field maps, the
geometry is already defined in the field solver. It is, therefore, sufficient to associate the materials
of the field map with the corresponding Medium objects.

For analytic fields, the geometry is, in general, given by the cell layout.

For other components (e. g. user-parameterized fields), the geometry has to be defined
separately.

Simple structures can be described by the native geometry (GeometrySimple), which has only a
very restricted repertoire of shapes (solids). At present, the available solids are

• SolidBox,

• SolidTube,

• SolidHole,

• SolidRidge,

• SolidExtrusion,

• SolidWire, and

• SolidSphere.

A description of these classes is given in Appendix C.

As an example, we consider a gas-filled tube with a diameter of 1 cm and a length of 20 cm (along
the 𝑧-axis), centred at the origin:

// Create the medium.
MediumMagboltz gas;
// Create the geometry.
GeometrySimple geo;
// Dimensions of the tube
double rMax = 0.5, halfLength = 10.;
SolidTube tube(0., 0., 0., rMax, halfLength);
// Add the solid to the geometry, together with the gas inside.
geo.AddSolid(&tube, &gas);

Solids may overlap. When the geometry is scanned (triggered, for instance, by calling GetMedium),
the first medium found is returned. The sequence of the scan is reversed with respect to the
assembly of the geometry. Hence, the last medium added to the geometry is considered the
innermost.

For more complex structures, the class GeometryRoot can be used which provides an interface to
the ROOT geometry (TGeo). Using GeometryRoot, the above example would look like this:

// Create the ROOT geometry.
TGeoManager* geoman = new TGeoManager("world", "geometry");
// Create the ROOT material and medium.
// For simplicity we use the predefined material "Vacuum".
TGeoMaterial* matVacuum = new TGeoMaterial("Vacuum", 0, 0, 0);
TGeoMedium* medVacuum = new TGeoMedium("Vacuum", 1, matVacuum);
// Dimensions of the tube
double rMin = 0., rMax = 0.5, halfLength = 10.;
// In this simple case, the tube is also the top volume.

39 Chapter 4. Components

TGeoVolume* top = geoman->MakeTube("TOP", medVacuum, rMin, rMax, halfLength);
geoman->SetTopVolume(top);
geoman->CloseGeometry();
// Create the Garfield medium.
MediumMagboltz* gas = new MediumMagboltz();
// Create the Garfield geometry.
GeometryRoot* geo = new GeometryRoot();
// Pass the pointer to the TGeoManager.
geo->SetGeometry(geoman);
// Associate the ROOT medium with the Garfield medium.
geo->SetMedium("Vacuum", gas);

In either case (GeometrySimple and GeometryRoot), after assembly the geometry is passed to
the Component as a pointer:

void SetGeometry(Geometry* geo);

4.1.1. Visualizing the geometry

Geometries described by GeometrySimple can be viewed using the class ViewGeometry.

MediumMagboltz gas;
// Create and setup the geometry.
GeometrySimple geo;
const double r1 = 0.4;
const double r2 = 0.6;
SolidHole hole(0, 0, 0, r1, r2, 1, 1, 1);
hole.SetSectors(4);
geo.AddSolid(&hole, &gas);

// Create a viewer.
ViewGeometry geoView(&geo);
geoView.Plot3d();

The snippet above will produce a three-dimensional impression of the geometry. The function
ViewGeometry::Plot2d() draws a cut through the solids at the current viewing plane, e. g.
using again the geometry defined above,

// ...
ViewGeometry geoView;
geoView.SetPlaneXZ();
geoView.Plot2d();

The layout of an arrangement of wires, planes and tubes defined in ComponentAnalyticField
can be visualized using the member function

void PlotCell(TPad* pad);

of ComponentAnalyticField:

Chapter 4. Components 40

𝑥

𝑦
0

1 2

3

4

5

6

7

Figure 4.1. Eight-node quadrilateral element used in 2D Ansys field maps.

// Create and set up the component.
ComponentAnalyticField cmp;
// ...
TCanvas* canvas = new TCanvas("c", "", 600, 600);
cmp.PlotCell(canvas);

This function internally uses the class ViewCell. Instead of calling PlotCell one can also use
ViewCell directly:

// Create and set up the component.
ComponentAnalyticField cmp;
...
// Create a viewer.
ViewCell view(&cmp);
// Make a two-dimensional plot of the cell layout.
view.Plot2d();

By default, ViewCell will use marker symbols to indicate the position of the wires (instead of
drawing the wires to scale). This behaviour can be switched on or off using the function

ViewCell::EnableWireMarkers(const bool on);

The function ViewCell::Plot3d() paints a three-dimensional view of the cell layout.

4.2. Field maps

4.2.1. Ansys

The interpolation of FEM field maps created with the program Ansys [2] is dealt with by the
classes ComponentAnsys121 and ComponentAnsys123. The class names refer to the type of mesh
element used by Ansys:

• ComponentAnsys121 reads two-dimensional field maps with eight-node curved quadrilaterals
(Fig. 4.1), known as “plane121” in Ansys).

41 Chapter 4. Components

𝑥

𝑦

𝑧
0

1

2

3

4

5

6

7

8
9

Figure 4.2. Ten-node tetrahedral element used in 3D Ansys field maps. The node numbering
scheme shown here is the one used in Ansys and differs slightly from the one used internally in
ComponentAnsys123.

• ComponentAnsys123 reads three-dimensional field maps with quadratic curved tetrahedra
(Fig. 4.2), known as “solid123” in Ansys).

The field map is imported with the function

bool Initialise(const std::string& elist, const std::string& nlist,
const std::string& mplist, const std::string& prnsol,
const std::string& unit);

elist name of the file containing the list of elements (default: "ELIST.lis")

nlist name of the file containing the list of nodes (default: "NLIST.lis")

mplist name of the file containing the list of materials (default: "MPLIST.lis")

prnsol name of the file containing the nodal solutions (default: "PRNSOL.lis")

unit length unit used in the calculation (default: "cm",
other recognized units are "mum"/"micron"/"micrometer", "mm"/"millimeter" and "m"/"meter").

The return value is true if the map was read successfully.

In order to enable charge transport and ionization, the materials in the map need to be associated
with Medium objects.

// Get the number of materials in the map.
size_t GetNumberOfMaterials();
// Associate a material with a Medium object.
void SetMedium(const size_t imat, Medium* medium);

imat index in the list of (field map) materials

medium pointer to the Medium object to be associated with this material

Chapter 4. Components 42

The materials in the field map are characterized by the relative dielectric constant 𝜀 and the
conductivity 𝜎. These parameters are accessible through the functions

double GetPermittivity(const size_t imat);
double GetConductivity(const size_t imat);

The function

void SetGas(Medium* medium);

associates a given Medium object to all field map materials with 𝜀 = 1.

By default, mesh elements in conductors, i.e. materials with resistivity equal to zero, are
eliminated. This feature can be switched on or off using

void EnableDeleteBackgroundElements(const bool on = true);

on flag to delete mesh elements in conductors (true) or keep them (false)

A weighting field map can be imported using

bool SetWeightingField(std::string prnsol, std::string label);

prnsol name of the file containing the nodal solution for the weighting field configuration

label arbitrary name, used for identification of the electrode/signal

The weighting field map has to use the same mesh as the previously read “actual” field map.

For periodic structures, e. g. GEMs, one usually models only the basic cell of the geometry and
applies appropriate symmetry conditions to cover the whole problem domain. The available
symmetry operations are:

• simple periodicities,

• mirror periodicities,

• axial periodicities, and

• rotation symmetries.

Mirror periodicity means that odd periodic copies of the basic cell are mirror images of even
periodic copies. Mirror periodicity and simple periodicity as well as axial periodicity and rotation
symmetry are, obviously, mutually exclusive. In case of axial periodicity, the field map has to
cover an integral fraction of 2𝜋.

Periodicities can be set and unset using

void EnablePeriodicityX(const bool on);
void EnableMirrorPeriodicityX(const bool on);
void EnableAxialPeriodicityX(const bool on);
void EnableRotationSymmetryX(const bool on);

on flag to enable (true) or disable (false) periodicity.

43 Chapter 4. Components

Analogous functions are available for 𝑦 and 𝑧.

In order to assess the quality of the mesh, one can retrieve the dimensions of each mesh element
using

bool GetElement(const size_t i, double& vol, double& dmin, double& dmax);

i index of the element

vol volume/area of the element

dmin, dmax min./max. distance between two node points

In the following example we make histograms of the aspect ratio and element size.

ComponentAnsys123 fm;
// ...
TH1F* hAspectRatio = new TH1F("hAspectRatio"; "Aspect Ratio", 100, 0., 50.);
TH1F* hSize = new TH1F("hSize", "Element Size", 100, 0., 30.);
const size_t nel = fm.GetNumberOfElements();
// Loop over the elements.
double volume, dmin, dmax;
for (size_t i = 0; i < nel; ++i) {

fm.GetElement(i, volume, dmin, dmax);
if (dmin > 0.) hAspectRatio->Fill(dmax / dmin);
hSize->Fill(volume);

}
TCanvas* c1 = new TCanvas();
hAspectRatio->Draw();
TCanvas* c2 = new TCanvas();
c2->SetLogy();
hSize->Draw();

Since Ansys uses curved elements, an iterative procedure is used for determining the local
coordinates of a point within an element. This search can sometimes fail to achieve the requested
precision. In this case, the first-order approximation is used, and (by default) a warning message
is printed out. These messages can be switched on or off using

void EnableConvergenceWarnings(const bool on);

4.2.2. Synopsys TCAD

Electric fields calculated using the device simulation program Synopsys Sentaurus [47] can be
imported with the classes ComponentTcad2d and ComponentTcad3d (derived from the base class
ComponentTcadBase).

The function to import the field map is

bool Initialise(const std::string& gridfilename,
const std::string& datafilename);

gridfilename name of the mesh file, the extension is typically .grd

Chapter 4. Components 44

datafilename name of the file containing the nodal solution; the filename typically typically ends
with _des.dat

Both files have to be exported in DF-ISE format, files in the default TDR format cannot be read.
To convert a TDR file to _.dat and .grd files, the Sentaurus tool tdx can be used

tdx -dd fieldToConvert.tdr

The classes have been tested with meshes created with the application Mesh which can produce
axis-aligned two- and three-dimensional meshes. The only three-dimensional mesh elements
ComponentTcad3d can deal with are tetrahedra. A mesh which consists only of simplex elements
(triangles in 2D, tetrahedra in 3D), can be generated by invoking Mesh with the option -t.

After importing the files, the regions of the device where charge transport is to be enabled need
to be associated with Medium objects.

// Get the number of regions in the device
size_t GetNumberOfRegions();
// Associate a region with a Medium object
void SetMedium(const size_t ireg, Medium* medium);

ireg index in the list of device regions

medium pointer to the Medium object to be associated with this region

To associate all regions with certain material to a given Medium object, one can use the func-
tion

void SetMedium(const std::string& material, Medium* medium);

material name of the material in TCAD

medium pointer to the Medium to be associated to all regions with this material.

The name of a region can be retrieved with

void GetRegion(const size_t i, std::string& name, bool& active);

name label of the region as defined in the device simulation

active flag indicating whether charge transport is enabled in this region

Simple periodicities and mirror periodicities along 𝑥, 𝑦, and – in case of ComponentTcad3d – 𝑧
are supported.

void EnablePeriodicityX();
void EnableMirrorPeriodicityX();

Using TCAD, the weighting field and potential are typically determined by first computing the
electric field E0 and potential 𝑉0 with all electrodes set at the nominal potentials. The potential
at the electrode to be read out is then increased by a small voltage Δ𝑉 and the corresponding

45 Chapter 4. Components

electric field 𝐸+ and potential 𝑉+ are calculated. The weighting field and potential are then
given by

E𝑤 = 1
Δ𝑉

(E+ − E0) , 𝑉𝑤 = 1
Δ𝑉

(𝑉+ − 𝑉0) .

In ComponentTcad2d and ComponentTcad3d the weighting field and potential loaded using

SetWeightingField(const std::string& datfile1, const std::string& datfile2,
const double dv, const std::string& label);

datfile1 .dat file containing the solution E0, 𝑉0,

datfile2 .dat file containing the solution E+, 𝑉+,

dv potential difference Δ𝑉 ,

label identifier of the electrode.

The mesh is assumed to be the same as the one for the drift field (imported using Initialise).

Using the function

bool SetWeightingFieldShift(const std::string& label,
const double x, const double y, const double z);

one can set an offset to be applied to the map of weighting fields and potentials imported from
TCAD.

4.2.3. Elmer

The class ComponentElmer (contributed by J. Renner) allows one to import field maps created
with the open source field solver Elmer [15] and the mesh tool Gmsh [16]. A detailed tutorial
can be found on the webpage.

4.2.4. CST

The class ComponentCST (contributed by K. Zenker) reads field maps extracted from CST Studio.
More details can be found at http://www.desy.de/ zenker/FLC/garfieldpp.html.

4.2.5. COMSOL

The class ComponentComsol can be used for importing field maps computed using COMSOL
Multiphysics. The function to import a field map is

bool Initialise(std::string header = "mesh.mphtxt",
std::string mplist = "dielectrics.dat",
std::string field = "field.txt");

header COMSOL Multiphysics text file (.mphtxt) containing the mesh data,

mplist file containing the material properties,

field file containing the exported field data.

http://www.desy.de/~zenker/FLC/garfieldpp.html

Chapter 4. Components 46

𝑥min 𝑥max
𝑦min

𝑦max

(0, 0) (3, 0)

(3, 2)

Figure 4.3. Example of a two-dimensional regular mesh (as used in ComponentGrid) with 4 × 3
grid points, corresponding to 𝑛𝑥 = 4, 𝑛𝑦 = 3.

The materials file (second argument) is a simply ASCII file containing

• the number of materials in the field map,

• the relative dielectric constants of each of the materials,

• the number of “domains”,

• a list of domain numbers and indices of the corresponding materials.

The domain numbers can be found in the section # Geometric entity indices of the mesh
data file (mesh.mphtxt). For a field map with two materials, one with a dielectric constant of
𝜀 = 1 (domain number 1) and the other one with a dielectric constant of 𝜀 = 4 (domain number
2), the file should look like the following.

2
1. 4.
2
1 0
2 1

4.2.6. Regular grids

Electric field values on a regular two-dimensional or three-dimensional grid can be imported
from a text file using the class ComponentGrid. The electric field values (and potential) for each
point on the grid are read in using

bool LoadElectricField(const std::string& filename, const std::string& format,
const bool withPotential, const bool withFlag,
const double scaleX = 1., const double scaleE = 1.,
const double scaleP = 1.);

filename name of the ASCII file

format description of the file format (see below)

withPotential flag whether the file contains an additional column with the electrostatic potential

withRegion flag whether the file contains an additional column with an integer value indicating
whether the point is in an active medium (1) or not (0).

47 Chapter 4. Components

scaleX, scaleE, scaleP scaling factors to be applied to the coordinates, electric field values and
potentials

The file should contain one line for each grid point. The available formats are XY, XZ, IJ, IK,
XYZ and IJK, the first four for two-dimensional maps, and the last two for three-dimensional
maps. In case of XY (XYZ), the first two (three) columns contain the 𝑥, 𝑦 (and 𝑧) coordinates
of a given point in the grid, followed by the electric field values (and potential if available) at
this point. The class then determines the closest grid point and assigns the electric field and
potential accordingly. In case of IJ (IJK) the indices of the grid point along 𝑥, 𝑦 (and 𝑧) are
specified directly. The file can include comments (lines starting with # or //).

Prior to reading the electric field, the limits and spacing of the grid can be set using the
function

void SetMesh(const unsigned int nx, const unsigned int ny,
const unsigned int nz, const double xmin, const double xmax,
const double ymin, const double ymax, const double zmin,
const double zmax);

nx, ny, nz number of grid lines along 𝑥, 𝑦, 𝑧

xmin, xmax, … boundaries of the grid in 𝑥, 𝑦, 𝑧

An example illustrating the parameters defining the mesh and the numbering of the grid nodes
is shown in Fig. 4.3. Alternatively, the grid parameters can be read from the file that contains
the electric field/potential. For instance, to specify the limits and number of grid lines along 𝑧, a
line like

ZMIN = -1., ZMAX = 1., NZ = 3

should be included at the beginning of the file. If the user has not specified the grid explicitly
(using SetMesh) and the information given in the comment lines is incomplete, the class will try
to determine the remaining grid parameters from the table of coordinates and corresponding
electric fields itself.

When retrieving the field/potential at a given point (𝑥, 𝑦, 𝑧) the class performs a trilinear
interpolation between the values at the grid nodes surrounding this point. The medium in the
domain covered by the mesh is set using

void SetMedium(Medium* m);

A point (𝑥, 𝑦, 𝑧) is considered in an active region (i.e. associated to the medium) if all surrounding
grid nodes are flagged as active.

A magnetic field map can be imported using the function

bool LoadMagneticField(const std::string& filename, const std::string& format,
const double scaleX = 1., const double scaleB = 1.);

The available formats are the same as for the electric field (except for the extra columns for
potential and active medium flag). Prompt and delayed weighting fields/potentials can be
imported using

Chapter 4. Components 48

𝑥min 𝑥max
𝑦min

𝑦max

(0, 0) (2, 0)

(2, 1)

Figure 4.4. Example of a two-dimensional regular mesh (as used in ComponentVoxel) with
3 × 2 cells, corresponding to 𝑛𝑥 = 3, 𝑛𝑦 = 2.

bool LoadWeightingField(const std::string& filename, const std::string& format,
const bool withPotential,
const double scaleX = 1., const double scaleE = 1.,
const double scaleP = 1.);

bool LoadWeightingField(const std::string& filename, const std::string& format,
const double time, const bool withPotential,
const double scaleX = 1., const double scaleE = 1.,
const double scaleP = 1.);

Calling

void SetCylindricalCoordinates();

switches to a cylindrical coordinate system instead of the default Cartesian coordinates. The
first coordinate (”x”) then corresponds to the radial distance and the second coordinate (”y”)
corresponds to the azimuth (in radian).

The class ComponentVoxel is similar to ComponentGrid but uses a different definition of the
mesh. An example illustrating the parameters of the mesh and the numbering of the voxels/cells
is shown in Fig. 4.4. As a first step, the mesh needs to be defined using the function

void SetMesh(const unsigned int nx, const unsigned int ny,
const unsigned int nz, const double xmin, const double xmax,
const double ymin, const double ymax, const double zmin,
const double zmax);

nx, ny, nz number of rows/columns of cells along 𝑥, 𝑦, 𝑧

xmin, xmax, … boundaries of the grid in 𝑥, 𝑦, 𝑧

The electric field values (and potential) for each voxel are imported using

bool LoadElectricField(const std::string& filename, const std::string& format,
const bool withPotential, const bool withRegion,
const double scaleX = 1., const double scaleE = 1.,
const double scaleP = 1.);

49 Chapter 4. Components

filename name of the ASCII file

format description of the file format (see ComponentGrid)

withPotential flag whether the file contains an additional column with the electrostatic potential

withRegion flag whether the file contains an additional column with an integer value correspond-
ing to the region index (each region can be associated with a different medium)

scaleX, scaleE, scaleP scaling factors to be applied to the coordinates, electric field values and
potentials

The medium to be associated with a given region can be set using

void SetMedium(const unsigned int i, Medium* m);

i index of the region

If the regions are not assigned explicitly when importing the electric field, all voxels are assumed
to belong to the same region (index 0).

By default, the field and potential are assumed to be constant within a voxel. Alternatively,
the fields/potentials given in the field map file can be interpreted to be the values at the voxel
centres and the fields/potentials at intermediate points be determined by trilinear interpolation.
This feature can be activated using the function

void EnableInterpolation(const bool on = true);

4.2.7. Visualizing the mesh

For visualizing the mesh imported from a FEM field map (or a TCAD field map), the class
ViewFEMesh (written by J. Renner) is available. Using

void ViewFEMesh::SetViewDrift(ViewDrift* driftView);

a ViewDrift object can be attached to the mesh viewer. The function

bool ViewFEMesh::Plot(const bool twod = true, const bool outline = false);

then draws the drift lines stored in the ViewDrift class together with the mesh. If the flag twod
is set to true, a two-dimensional projection of the drift lines and a cut view of the mesh at the
currently set viewing plane are drawn. If twod is false, the drift lines and mesh elements are
drawn in 3D. If outline is set to true, only the facets separating two regions are drawn. The
plot can be customized using

void SetColor(int matid, int colorid);
void SetFillColor(int matid, int colorid);
void SetFillMesh(bool fill);

matid material index in the field map

colorid index of the ROOT color with which all elements of material matid are to be drawn

Chapter 4. Components 50

fill flag indicating whether to draw a wireframe mesh (false) or filled elements

As an illustration consider the following example (suppose that driftView is a pointer to a
ViewDrift object)

ComponentAnsys123 fm;
// ...
TCanvas* c1 = new TCanvas();
ViewFEMesh* meshView = new ViewFEMesh(&fm);
meshView->SetCanvas(c1);
// Set the viewing plane.
meshView->SetPlane(0, -1, 0, 0, 0, 0);
meshView->SetFillMesh(false);
meshView->SetViewDrift(driftView);
meshView->SetArea(-0.01, -0.01, -0.03, 0.01, 0.01, 0.01);
meshView->Plot();

ComponentAnsys123 fm;
// ...
TCanvas* c1 = new TCanvas();
ViewFEMesh* meshView = new ViewFEMesh(&fm);
meshView->SetCanvas(c1);
// Set the viewing plane.
meshView->SetPlane(0, -1, 0, 0, 0, 0);
meshView->SetFillMesh(false);
meshView->SetViewDrift(driftView);
meshView->SetArea(-0.01, -0.01, -0.03, 0.01, 0.01, 0.01);
meshView->Plot();

4.3. Analytic fields

For two-dimensional geometries consisting of wires, planes and tubes, semi-analytic calculation
techniques are implemented. The equations to be solved to find the wire charges are known as
capacitance equations, they are obtained by expressing the (known) potential of wire 𝑖 in the
(unknown) charges per unit length 𝑞𝑗 on the wires 𝑗 = 1 … 𝑛,

𝑉𝑖 =
𝑛

∑
𝑗=1

𝐶−1
𝑖𝑗 𝑞𝑗 + 𝑉ref

When planes are absent, the freedom to choose a reference potential 𝑉ref can be exploited to
ensure that the sum of all charges is zero, by adding

𝑛
∑
𝑗=1

𝑞𝑗 = 0

to the set of equations. If there is at least one equipotential plane, the sum of all charges is
automatically zero (the charges and mirror charges cancel) and the reference potential is set
equal to zero in this case.

The equipotential planes can be treated as if they were grounded if the linear potential generated
by the planes alone is subtracted from all wire-potentials before the charges are calculated and
added separately when the potential and electrostatic field are evaluated.

51 Chapter 4. Components

4.3.1. Describing the cell

The medium to be associated with the active region of the cell is set using

SetMedium(Medium* medium);

Wires, tubes and planes can be added to the cell layout by means of the following functions:

// Add a wire
void AddWire(const double x, const double y, const double d,

const double v, const std::string& label = "",
const double length = 100.,
const double tension = 50., const double rho = 19.3);

// Add a tube
void AddTube(const double r, const double v,

const int nEdges, const std::string& label = "");
// Add a plane at constant x
void AddPlaneX(const double x, const double v, const std::string& label = "");
// Add a plane at constant y
void AddPlaneY(const double y, const double v, const std::string& label = "");

All of these functions take the potential v (in V) and a label as arguments. The label argument
is optional. If the default value (empty string) is used, the calculation of the weighting field
and potential for this wire, tube or plane will be skipped (i. e. one cannot compute the signal
induced in this element).

For wires, the center of the wire (x, y) and its diameter (d) need to be specified. Optional
parameters are the wire length, the tension (more precisely, the mass in g of the weight used to
stretch the wire during the assembly) and the density (in g / cm3) of the wire material. These
parameters have no influence on the electric field. The number of wires that can be added is not
limited.

Tube-specific parameters are the radius1 (r) and the number of edges, which determines the
shape of the tube:

• 𝑛 = 0: cylindrical pipe

• 3 ≤ 𝑛 ≤ 8: regular polygon

There can be only one tube in a cell. The tube is always centered at the origin (0, 0).

Planes are described by their coordinates. A cell can have at most two 𝑥 and two 𝑦 planes.
Planes and tubes cannot be used together in the same cell.

The geometry can be reset (thereby deleting all wires, planes and tubes) by

void Clear();

Before assembling and inverting the capacitance matrix, a check is performed whether the
provided geometry matches the requirements. If necessary, the planes and wires are reordered.
Wires outside the tube or the planes as well as overlapping wires are removed.

1For non-circular tubes, this parameter is the distance between the origin and any of the edges.

Chapter 4. Components 52

4.3.2. Cylindrical geometries

By default, the wire coordinates are specified in Cartesian coordinates and the planes are parallel
to the 𝑥 or 𝑦 axis. Calling

void SetPolarCoordinates();

switches to a polar coordinate system. This can be useful for certain types of cells which are
more conveniently described in polar coordinates (𝑟, 𝜙), for instance because of the presence of a
circular plane.

Internally, the class uses log-polar coordinates (𝜌, 𝜙), where the angular coordinate 𝜙 is the same
as in polar coordinates, and 𝜌 = ln 𝑟. The transformation2

(𝑥, 𝑦) = e𝜌 (cos𝜙, sin𝜙)

is a conformal mapping3 which translates circles to lines at constant 𝜌. After calculating the
field in internal coordinates, it is transformed back to Cartesian coordinates using

(𝐸𝑥
𝐸𝑦

) = e𝜌 (cos𝜙 − sin𝜙
sin𝜙 cos𝜙) (𝐸𝜌

𝐸𝜙
) .

By calling

void SetCartesianCoordinates();

one can change back to Cartesian coordinates. Mixed coordinates are not permitted; when
switching from Cartesian to polar coordinates or vice versa the description of the cell is reset.

In order to add a wire to the cell, the same function is used for both Cartesian and polar
coordinates. In the latter case, the first coordinate corresponds to the radius of the wire (in cm),
and the second coordinate corresponds to the angle (in degrees). A wire must not be positioned
at the origin if polar coordinates are being used.

Planes at constant radius or at constant angle are specified using

void AddPlaneR(const double r, const double voltage, const std::string& label);
void AddPlanePhi(const double phi, const double voltage, const std::string& label);

r radius of the plane (in cm),

phi angle of the plane (in degrees).

The following simple example generates a pie wedge with a wire inside.

ComponentAnalyticField cmp;
cmp.SetPolarCoordinates();
const double r = 2.;
cmp.AddPlaneR(r, 0., "r");
cmp.AddPlanePhi(0., 0., "phi1");
cmp.AddPlanePhi(60., 0., "phi2");
cmp.AddWire(0.5 * r, 30., 50.e-4, 500., "w");

2Using complex numbers, the transformation can be written as 𝑥 + i𝑦 = exp (𝜌 + i𝜙).
3This implies that the Laplace equation in log-polar coordinates has the same form as in Cartesian coordinates.

53 Chapter 4. Components

× ×⊙ ×
⊙

×
⊙

⊙
×

Figure 4.5. Examples of A-type cells (isolated wires with at most one 𝑥-plane and one 𝑦-plane).

× × × × × × × ×

⊙ ⊙ ⊙ ⊙

Figure 4.6. Examples of B1X-type cells (𝑥-periodic array of wires with at most one 𝑦-plane).

4.3.3. Periodicities

The class supports simple periodicity in 𝑥 and 𝑦 direction. The periodic lengths are set using

void SetPeriodicityX(const double s);
void SetPeriodicityY(const double s);

When working in polar coordinates, one can set the 𝜙 periodicity using

void SetPeriodicityPhi(const double s);

s angular period (in degrees).

If the 𝜙 periodicity is not set explicitly by the user, a cyclic boundary condition with a period of
2𝜋 is imposed.

Radial periodicity is not supported since the internal coordinate 𝜌 is not linear in 𝑟.

4.3.4. Cell types

Internally, cells are classified as belonging to one of these types:

A non-periodic cells with at most one 𝑥 and one 𝑦 plane

B1X 𝑥-periodic cells without 𝑥 planes and at most one 𝑦 plane

B1Y 𝑦-periodic cells without 𝑦 planes and at most one 𝑥 plane

B2X cells with two 𝑥 planes and at most one 𝑦 plane

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×
×

× ⊙ × ⊙ ×
× ⊙ × ⊙ ×
× ⊙ × ⊙ ×
× ⊙ × ⊙ ×
× ⊙ × ⊙ ×

×
⊙
×
⊙
×

×
⊙
×
⊙
×

×
⊙
×
⊙
×

×
⊙
×
⊙
×

×
⊙
×
⊙
×

×

×

×

⊙

⊙

×

×

×

⊙

⊙

×

×

×

⊙

⊙

⊙

⊙

⊙

×

×

⊙

⊙

⊙

×

×
×

Figure 4.7. Examples of C-type cells (doubly periodic arrays of wires).

Chapter 4. Components 54

×
×

××

×

× ×

×

Figure 4.8. Examples of D-type cells. Left: isolated wire in a circular tube (D1). Middle:
𝜙-periodic ring of wires in a circular tube (D2). Right: wire in a polygon (D3).

B2Y cells with two 𝑦 planes and at most one 𝑥 plane

C1 doubly periodic cells without planes

C2X doubly periodic cells with 𝑥 planes

C2Y doubly periodic cells with 𝑦 planes

C3 doubly periodic cells with 𝑥 and 𝑦 planes

D1 round tubes without axial periodicity

D2 round tubes with axial periodicity

D3 polygonal tubes without axial periodicity

After the cell has been assembled and initialized, the cell type can be retrieved by the func-
tion

std::string GetCellType();

4.3.5. Dipole moments

By default, ComponentAnalyticField uses the thin-wire approximation for computing the
electric field and potential. In this approach, dipole and higher-order terms are neglected which
is usually a good approximation if the wire spacing is large compared to the diameter. One can
request dipole terms to be included in the calculation using

void EnableDipoleTerms(const bool on = true);

Dipole terms are currently implemented only for cell types A, B1X, B1Y, B2X and B2Y. To
investigate whether dipole and higher order terms are significant, one can use the function

bool MultipoleMoments(const unsigned int iw, const unsigned int order = 4,
const bool print = false, const bool plot = false,
const double rmult = 1.,
const double eps = 1.e-4, const unsigned int nMaxIter = 20);

iw index of the wire for which the multipole decomposition should be done,

order order of the highest multipole moment to be taken into account,

print flag to request verbose output during the minimisation step,

plot flag to create a plot of the result of the multipole fit,

55 Chapter 4. Components

rmult distance (in units of the wire radius) at which the potential is to be calculated,

eps “small number” used by the minimisation function to calculate the derivative matrix,

nMaxIter max. number of iteration in the minimisation.

4.3.6. Weighting fields

By default, weighting fields and potentials will be calculated for all elements (wires, planes, etc.)
which were assigned a non-empty string as a label.

In addition to the weighting fields of the elements used for the calculation of the (actual) electric
field, the weighting field for a strip segment of a plane can also be calculated. Strips can be
defined using

void AddStripOnPlaneX(const char direction, const double x,
const double smin, const double smax,
const std::string& label, const double gap = -1.);

void AddStripOnPlaneY(const char direction, const double y,
const double smin, const double smax,
const std::string& label, const double gap = -1.);

direction orientation of the strip ('y' or 'z' in case of 𝑥-planes, 'x' or 'z' in case of 𝑦-planes

x, y coordinate of the plane on which the strip is located

smin, smax min. and max. coordinate of the strip

The strip weighting field is calculated using an analytic expression for the field between two
infinite parallel plates which are kept at ground potential except for the strip segment, which is
raised to 1 V. The anode-cathode distance 𝑑 to be used for the evaluation of this expression can
be set by the user (variable gap in AddStripOnPlaneX, AddStripOnPlaneY). If this variable is
not specified (or set to a negative value), the following default values are used:

• if two planes are present in the cell, 𝑑 is assumed to be the distance between those planes;

• if only one plane is present, 𝑑 is taken to be the distance to the nearest wire.

Similarly, pixels can be defined using

void AddPixelOnPlaneX(const double x, const double ymin, const double ymax,
const double zmin, const double zmax,
const std::string& label, const double gap = -1.,
const double rot = 0.);

void AddPixelOnPlaneY(const double y, const double xmin, const double xmax,
const double zmin, const double zmax,
const std::string& label, const double gap = -1.,
const double rot = 0.);

The last (optional) parameter specifies the rotation angle (in rad) of the pixel in the plane. Pixel
weighting fields are calculated using the expressions given in Ref. [34].

When working in polar coordinates, strips and pixels are defined using

void AddStripOnPlaneR(const char direction, const double r, const double smin ,
const double smax, const std::string& label,

Chapter 4. Components 56

const double gap = -1.);
void AddStripOnPlanePhi(const char direction, const double phi, const double smin,

const double smax, const std::string& label,
const double gap = -1.);

void AddPixelOnPlaneR(const double r,
const double phimin, const double phimax,
const double zmin, const double zmax,
const std::string& label, const double gap = -1.);

void AddPixelOnPlanePhi(const double phi,
const double rmin, const double rmax,
const double zmin, const double zmax,
const std::string& label, const double gap = -1.);

Valid strip directions are 'p' (𝜙) or 'z' for circular planes and 'r' or 'z' for 𝜙 planes.

In periodic chambers, the electric field is identical in all copies of the basic cell, but the weighting
fields of the wires of one copy are as a rule not the same as the weighting fields of the wires
of another copy. ComponentAnalyticField will, by default, compute the weighting fields and
potentials by considering only the basic cell – suppressing all periodicities. This is a good
approximation if the wires being read out are surrounded by many other wires in the basic
cell.

This behaviour can be controlled using the function

void SetNumberOfCellCopies(const unsigned int nfourier);

The argument (nfourier) must be 0 or an integral power of 2.

If the argument is 0, the weighting field and potential will be computed using the same functions
that are used for the electric field, i. e. they will exhibit the same periodicity. This should be
used if one is interested only in the signals induced in the planes (and not in the wire signals) or
if all copies of the read-out wires are interconnected.

If the argument is non-zero, SetNumberOfCellCopies sets the number of copies of the basic cell to
be included in the weighting field calculation. Requesting a large number of copies is meaningful
only in chambers which contain equipotential planes - convergence is poor otherwise.

4.3.7. Wire displacements

The forces acting on a wire and the wire displacement that results from these forces can be
computed using the methods

bool ForcesOnWire(const unsigned int iw,
std::vector<double>& xMap, std::vector<double>& yMap,
std::vector<std::vector<double> >& fxMap,
std::vector<std::vector<double> >& fyMap);

and

bool WireDisplacement(const unsigned int iw, const bool detailed,
std::vector<double>& csag, std::vector<double>& xsag,
std::vector<double>& ysag, double& stretch,
const bool print = true);

57 Chapter 4. Components

of ComponentAnalyticField. In both methods, the argument iw is the index of the wire (you
can use the function PrintCell to print a list of all wires in the cell layout). By default, both
gravitational force and electrostatic force are taken into account for computing the displacement.
This can be changed using

void EnableGravity(const bool on = true);
void EnableElectrostaticForce(const bool on = true);

The direction in which gravity acts on the wires can be set using

void SetGravity(const double dx, const double dy, const double dz);

The three arguments are the components of a vector indicating the direction in which gravity
pulls on the wires. Only the direction of the vector is used, not its normalisation.

The function WireDisplacement fills the vector csag with a set of coordinates along the wire
and the vectors xsag, ysag with the 𝑥 and 𝑦 components of the sag profile at these coordinates,
and sets the variable stretch to the relative elongation. It offers two levels of accuracy.

• With the flag detailed set to false, only the force acting on the wire in its nominal
position is used to compute the sag. The wire sag that results from such a force is parabolic,
since it results from an elastic elongation. The shape is not a hyperbolic cosine, this would
be the case of a freely hanging wire. This approach is incorrect if the wire is nominally in an
almost stable position while there are substantial forces acting on the wire in neighbouring
positions.

• If the flag detailed is set to true, the method also considers the force acting on the wire
in the vicinity of its nominal position. The electrostatic forces are computed by solving
the capacitance equations for a set of wire locations on a regular grid around the nominal
location and interpolating the resulting table of forces. The number of grid lines can be set
using

void SetScanningGrid(const unsigned int nX, const unsigned int nY);

The default is 11 lines in both 𝑥 and 𝑦. By default, the range of wire shifts for which the
forces are computed, is selected automatically by enlarging by a scaling factor (default: 2)
the zeroth order estimates of the shift, and restricting this to the largest area around the
wire which is free of other cell elements. The scaling factor can be set using

void SetScanningAreaFirstOrder(const double scale = 2.);

If the wire movements are expected to be very large, then one may wish to set the scanning
area to the largest area around the wire which is free from other cell elements:

void SetScanningAreaLargest();

You may also manually set the scanning area by specifying a lower 𝑥, an upper 𝑥, a lower 𝑦
and an upper 𝑦 which together describe a rectangular area relative to the nominal position
of the wire under consideration.

Chapter 4. Components 58

void SetScanningArea(const double xmin, const double xmax,
const double ymin, const double ymax);

By default, the calculation stops if a point of the wire is found at a position not covered
by the scanning area, whether set manually or automatically. If you enable extrapolation
using

void EnableExtrapolation(const bool on = true);

then the force on the wire at such a point will be computed by extrapolating the force
table. It is usually a better strategy to pick a scanning area that covers all wire positions –
if this is not possible, then the wire is probably not in a stable position (i.e. it will move
against other electrodes).

In the detailed approach, the differential equation that governs the wire sag is numerically solved
using a multiple shooting method in which each shot is traced with a Runge-Kutta-Nystroem
method, and in which the boundary and matching conditions are minimised with a Newton
method with Broyden rank-1 updates of the derivative matrix. The number of shots and the
number of integration steps within each shot can be set by the user

void SetNumberOfShots(const unsigned int n);
void SetNumberOfSteps(const unsigned int n);

The function ForcesOnWire fills the vectors xMap, yMap with the coordinates of the scanning
grid lines (relative to the nominal wire position) and the vectors fxMap, fyMap with the 𝑥 and 𝑦
components of the electrostatic force at the grid points. The scanning grid can be set using the
same methods as for WireDisplacement.

4.3.8. Optimisation

ComponentAnalyticField includes a set of methods that vary the potentials of a set of electrodes
in an attempt to match as closely as possible a function of the potential and field (field function)
to a given target value.

• The method

bool OptimiseOnTrack(const std::vector<std::string>& groups,
const std::string& field_function, const double target,
const double x0, const double y0, const double x1, const double y1,
const unsigned int nP = 20, const bool print = true);

compares target and field function on nP sampling points along a straight line between
(𝑥0, 𝑦0) and (𝑥1, 𝑦1). This function can be used e. g. to adjust the potentials on a drift
electrode in a TPC to get the proper drift field.

•
bool OptimiseOnGrid(const std::vector<std::string>& groups,

const std::string& field_function, const double target,
const double x0, const double y0, const double x1, const double y1,
const unsigned int nX = 10, const unsigned int nY = 10,
const bool print = true);

59 Chapter 4. Components

compares target and field function on a regular 𝑥 − 𝑦 (or 𝑟 − 𝜙) grid. The extent of the
grid area is defined by the two corners (𝑥0, 𝑦0) , (𝑥1, 𝑦1) and the grid density is defined by
nX, nY (number of lines in 𝑥 and 𝑦).

•
bool OptimiseOnWires(const std::vector<std::string>& groups,

const std::string& field_function, const double target,
const std::vector<unsigned int>& wires, const bool print = true);

compares target and field function on the surfaces of a set of wires (the vector wires
contains the wire indices). This function can be used e. g. to adjust the voltages on the
anode wires such that the field in their proximity has a given value.

The vector groups contains the labels of the electrodes for which to adjust the potentials. Elec-
trodes that are put together in a group are shifted collectively. In the expression field_function
the following variables may be used:

• x or r (𝑥 or 𝑟 coordinate),

• y or phi (𝑦 or 𝜙 coordinate),

• ex or er (𝑥 or 𝑟-component of the electric field),

• ey or ephi (𝑦 or 𝜙-component of the electric field),

• e (norm of the electric field),

• v (electric potential).

More variables can be added on demand.

If the flag print is set to true, some optimisation information is printed at each cycle.

The method used is that of repeated Householder steps minimising (in the Euclidean norm) the
difference between target and field function. Several conditions can cause the iteration to be
stopped:

• the user defined maximum number of iterations is reached,

• the relative change in Euclidean distance between the target and field function (on the
sampling points) drops below threshold 𝜀,

• the maximum distance (of all sampling points) between target and field function becomes
smaller than a threshold distance.

These parameters can be set using the method

void SetOptimisationParameters(const double dist = 1.,
const double eps = 1.e-4,
const unsigned int nMaxIter = 10);

The parameter 𝜀 is also used for computing the numerical derivatives needed for the covariance
matrix. A larger value (say 1) should be chosen when you know you are far from the optimised
value and a smaller value (say 10−4) when your initial guess is quite good.

Chapter 4. Components 60

4.4. neBEM

The nearly exact Boundary Element Method (neBEM) solver discretizes the boundary of the
domain in triangular and rectangular elements and computes the surface charge density on each
of these elements that is required to satisfy the applied boundary conditions. Once the charge
density distribution has been obtained, the potential and field can be evaluated at any point in
the domain. A detailed description of the technique can be found in Refs. [25, 21, 24].

The ComponentNeBem3d interface class requires as input a GeometrySimple object with its list
of solids and associated media.

void ComponentNeBem3d::SetGeometry(Geometry* geo);

The boundary conditions to be applied to each solid can be set using

void Solid::SetBoundaryPotential(const double v);

in case of a conductor at fixed potential (Dirichlet boundary conditions) or

void Solid::SetBoundaryDielectric();

in case of a dielectric-dielectric interface. In the latter case (Neumann boundary conditions),
the normal component of the displacement field D = 𝜀E is required to be continuous at the
boundary of the solid,

n ⋅ (𝜀+E+ − 𝜀−E−) .

During initialisation, ComponentNeBem3d

• retrieves the surface panels from the Solid objects present in the geometry,

• searches for and eliminates overlaps between the panels,

• and splits the resulting polygons into rectangular and triangular “primitives”.

These “primitives” are then passed on to neBEM, where they are further subdivided into
“elements” (rectangles and right-angled triangles). A special case are SolidWire objects which
are represented as one-dimensional straight line primitives and elements (corresponding to the
thin-wire approximation used also in ComponentAnalyticField). The elements should be small
enough such that the distribution of the charge density on them be approximated as uniform.
The size of the elements can be controlled using the functions

void SetTargetElementSize(const double length);
void SetMinMaxNumberOfElements(const unsigned int nmin, const unsigned int nmax);

length preferred linear size of the elements, measured along their edges.

nmin,nmax smallest and largest number of elements produced along either axis of a single
primitive.

One can also request different target element sizes for each Solid object, using

void Solid::SetDiscretisationLevel(const double dis);

61 Chapter 4. Components

After splitting the primitives into elements, neBEM determines the influence matrix 𝐾 and the
right-hand side vector4 of the system of equations

𝐾𝜌 = b,

inverts the matrix and computes the surface charge density 𝜌𝑖 of every element,

𝜌𝑖 = 𝐾−1
𝑖𝑗 𝑏𝑗.

4.4.1. Weighting fields

If a Solid object has been given a label using

void Solid::SetLabel(const std::string& label);

neBEM will compute its weighting field at the same time as the electric field. One can assign the
same label to multiple Solid objects. The weighting field corresponding to this label will then
be computed by setting the potential of all elements associated to solids with this label to 1V
(and grounding all other conducting elements).

4.5. Parameterisations

The class ComponentUser takes the electric field and potential from a user-defined function.

void SetElectricField(std::function<void(const double, const double, const double,
double& double&, double&)> f);

void SetPotential(std::function<double(const double, const double, const double)> f);

f user function

The signature of the electric field function is void(const double, const double, const
double, double&, double&, double&), the first three arguments being the coordinates 𝑥, 𝑦, 𝑧
and the last three (reference) arguments being the components of the electric field (to be assigned
in the function). The potential function takes the coordinates 𝑥, 𝑦, 𝑧 as arguments and returns
the potential. Similar functions are available to set the weighting field and potential, and the
magnetic field.

Alternatively, ComponentUser also allows one to define the electric field and potential in string ex-
pressions, which are then just-in-time compiled internally using the ROOT C++ interpreter.

void SetElectricField(const std::string& expression);
void SetPotential(const std::string& expression);

expression a compileable C++ expression.

Valid parameter names are x, y, z. The expression used for evaluating the electric field shall
assign the variables ex, ey, ez (corresponding to the three field components). If a field component
is not assigned in the expression, it is assumed to be zero.

If the active volume is a box, its limits can be set using the functions
4In a system with only Dirichlet boundary conditions, the right-hand side vector is given by the potentials at the

elements, 𝑏𝑖 = 𝑉𝑖.

Chapter 4. Components 62

void SetArea(const double xmin, const double ymin, const double zmin,
const double xmax, const double ymax, const double zmax);

In this case, the medium associated to the active volume is set using

void SetMedium(Medium* medium);

Alternatively, the geometry can be defined using

void SetGeometry(Geometry* geo);

As an example, let us consider the electric field in the bulk of an overdepleted planar silicon
sensor, given by

𝐸 (𝑥) =
𝑉 − 𝑉dep

𝑑
+ 2𝑥

𝑉dep

𝑑2 ,

where 𝑉 is the applied bias voltage, 𝑉dep is the depletion voltage, and 𝑑 is the thickness of the
diode.

MediumSilicon si;
// Detector thickness
const double d = 0.1;

ComponentUser cmp;
cmp.SetArea(0., -2 * d, -2 * d, d, 2 * d, 2 * d);
cmp.SetMedium(&si);
auto efield = [](const double x, const double y, const double z,

double& ex, double& ey, double& ez) {

// Depletion voltage
const double vdep = 160.;
// Applied voltage
const double v = 200.;

ey = ez = 0.;
ex = (v - vdep) / d + 2 * x * vdep / (d * d);

};
cmp.SetElectricField(efield);

Using the JIT-compilation approach, the above example would look like this.

MediumSilicon si;
// Detector thickness
const double d = 0.1;

ComponentUser cmp;
cmp.SetArea(0., -2 * d, -2 * d, d, 2 * d, 2 * d);
cmp.SetMedium(&si);
// Depletion voltage
const double vdep = 160.;
// Applied voltage
const double v = 200.;

63 Chapter 4. Components

std::string efield = "ex = " + std::to_string((v - vdep) / d) +
"2 * x * " + std::to_string(vdep / (d * d));

cmp.SetElectricField(efield);

4.6. Other components

For simple calculations, the class ComponentConstant can be used. As the name implies, it
provides a uniform electric field. The electric field and potential can be specified using

void SetElectricField(const double ex, const double ey, const double ez);
void SetPotential(const double x, const double p, const double z, const double v);

ex, ey, ez components of the electric field

x, y, z coordinates where the potential is specified

v voltage at the given position

The weighting field and potential can be set using

void SetWeightingField(const double wx, const double wy, const double wz,
const std::string label);

void SetWeightingPotential(const double x, const double y, const double z,
const double v);

wx,wy,wz components of the weighting field

label identifier of the weighting field/electrode

x, y, z coordinates where the weighting potential is specified

v weighting potential at the given position

As is the case with ComponentUser, the active volume can be set using SetArea and SetMedium
(if it is a box), or using SetGeometry in case of more complex geometries.

4.7. Visualizing the field

The class ViewField provides some basic functions for plotting the potential and field of a
component/sensor.

The Component or Sensor from which to retrieve the field/potential to be plotted is set through
the constructor of ViewField or by means of

void SetComponent(Component* c);
void SetSensor(Sensor* s);

By default, the voltage range is retrieved from the minimum and maximum values of the potential
in the component/sensor, and the range of the electric and weighting fields is “guessed” by taking
random samples. This feature can be switched on or off using the function

void EnableAutoRange(const bool on = true, const bool samplePotential = true);

Chapter 4. Components 64

The flag samplePotential indicates whether the range of the potential should be determined by
random sampling or if ViewField should first try to retrieve it from the component/sensor.

If the “auto-range” feature is disabled, the range of the function to be plotted needs to be set
using

void SetVoltageRange(const double vmin, const double vmax);
void SetElectricFieldRange(const double emin, const double emax);
void SetWeightingFieldRange(const double wmin, const double wmax);

4.7.1. One-dimensional plots

The function

void PlotProfile(const double x0, const double y0, const double z0,
const double x1, const double y1, const double z1,
const std::string& option = "v",
const bool normalised = true);

plots the potential or field (depending on the parameter option) along the line (𝑥0, 𝑦0, 𝑧0) →
(𝑥1, 𝑦1, 𝑧1). With the flag normalised set to true (default), normalised coordinates [0, 1] are
used for the 𝑥-axis.

Similar functions are available for visualizing weighting potentials and fields.

void PlotContourWeightingField(const std::string& label, const std::string& option);
void PlotWeightingField(const std::string& label, const std::string& option,

const std::string& drawopt);
void PlotProfileWeightingField(const std::string& label,

const double x0, const double y0, const double z0,
const double x1, const double y1, const double z1,
const std::string& option = "v",
const bool normalised = true);

label identifier of the electrode for which to plot the weighting field/potential.

4.7.2. Two-dimensional plots

The functions

void PlotContour(const std::string& option = "v");
void Plot(const std::string& option = "v", const std::string& drawopt = "");

create a contour plot or another two-dimensional plot in the chosen viewing plane. The quantity
to be plotted is set using the parameter option (see Table 4.2). The parameter drawopt is
passed on to the function Draw() of the ROOT TF2 class and sets the plotting options. For
instance,

ViewField view;
view.Plot("v", "SURF4");

65 Chapter 4. Components

Table 4.2. ViewField option strings and corresponding quantities.

Quantity option

Electrostatic potential "v", "p", "phi"
Magnitude of the electric field (|E|) "e", "emag", "norm"
𝑥-component of the electric field (𝐸𝑥) "ex"
𝑦-component of the electric field (𝐸𝑦) "ey"
𝑧-component of the electric field (𝐸𝑧) "ez"

Magnitude of the magnetic field (|B|) "bmag"
𝑥-component of the magnetic field (𝐵𝑥) "bx"
𝑦-component of the magnetic field (𝐵𝑦) "by"
𝑧-component of the magnetic field (𝐵𝑧) "bz"

will create a surface plot of the potential.

The viewing plane and the region to be drawn can be specified using

void SetArea(const double xmin, const double ymin, const double xmax, const double ymax);
void SetPlane(const double fx, const double fy, const double fz,

const double x0, const double y0, const double z0);
void Rotate(const double angle);

xmin, ymin, xmax, ymax plot range in “local coordinates” (in the current viewing plane).

fx, fy, fz normal vector of the plane.

x0, y0, z0 in-plane point.

angle rotation angle (in radian).

By default, the viewing plane is the 𝑥−𝑦 plane (at 𝑧 = 0) and the plot range is retrieved from the
bounding box of the component/sensor. The default viewing plane can be restored using

void SetPlaneXY();

and the feature to determine the plot area from the bounding box can be activated using

void SetArea();

The density of the plotting grid can be set using

void SetNumberOfSamples1d(const unsigned int n);
void SetNumberOfSamples2d(const unsigned int nx, const unsigned int ny);

n, nx, ny number of points in 𝑥 and 𝑦 direction (default for one-dimensional plots: 𝑛 = 1000;
default for two-dimensional plots: 𝑛𝑥 = 𝑛𝑦 = 200)

The number of contour levels can be set using

void SetNumberOfContours(const unsigned int n);

Chapter 4. Components 66

4.7.3. Field lines

The function

void PlotFieldLines(const std::vector<double>& x0,
const std::vector<double>& y0,
const std::vector<double>& z0,
const bool electron = true, const bool axis = true,
const short col = kOrange - 3)

computes and draws electric field lines from a set of starting points, given by the vectors x0,
y0, z0. The flag electron specifies whether the field lines should be calculated for a negative
(electron-like) test charge or for a positive test charge.

A useful helper function for determining the starting points is

bool EqualFluxIntervals(const double x0, const double y0, const double z0,
const double x1, const double y1, const double z1,
std::vector<double>& xf, std::vector<double>& yf,
std::vector<double>& zf,
const unsigned int nPoints = 20) const;

which fills the vectors xf, yf, zf with the coordinates of nPoints along the line (𝑥0, 𝑦0, 𝑧0) −
− (𝑥1, 𝑦1, 𝑧1) which are spaced by equal flux intervals. The flux is computed by integrating the
electric field component that is in the viewing plane and perpendicular to the line.

If the flux changes sign over the track, then points are only generated over the parts of the line
where the flux is positive if the total flux over the line is positive. Conversely, if the total flux is
negative, points are generated only in areas where the flux is negative.

A similar function is

bool FixedFluxIntervals(const double x0, const double y0, const double z0,
const double x1, const double y1, const double z1,
std::vector<double>& xf, std::vector<double>& yf,
std::vector<double>& zf,
const double interval = 10.) const;

It fills the vectors xf, yf, zf with the coordinates of points that are spaced by a given flux
interval (in units of V).

4.8. Inspecting the field

The Component base class provides functions for inspecting the field, in particular for determining
the electric flux over a surface.

double IntegrateFluxSphere(const double xc, const double yc, const double zc,
const double r, const unsigned int nI = 20);

calculates the charge (in fC) enclosed in a sphere of radius 𝑟 centred at (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) using Gauss’s
law, i.e. by integrating the normal component of the electric field over the surface of the

67 Chapter 4. Components

sphere,
𝑄 = 𝜀0 ∮ E ⋅ dA.

Similarly,

double IntegrateFluxCircle(const double xc, const double yc,
const double r, const unsigned int nI = 50);

calculates the line charge (in fC / cm) contained in a circle of radius 𝑟 centred at (𝑥𝑐, 𝑦𝑐). The
integrations are performed using six-point Gaussian quadrature. The number of integration
intervals can be set as a parameter.

The integral of the flux over a parallelogram can be calculated using the function

double IntegrateFluxParallelogram(const double x0, const double y0, const double z0,
const double dx1, const double dy1, const double dz1,
const double dx2, const double dy2, const double dz2,
const unsigned int nU = 20, const unsigned int nV = 20);

x0,y0,z0 coordinates of one of the corners of the parallelogram,

dx1,dy1,dz1 direction vector from (𝑥0, 𝑦0, 𝑧0) to one of the adjacent corners,

dx2,dy2,dz2 direction vector to the other adjacent corner,

nU,nV number of integration intervals along the two directions.

The result is given in units of V cm.

4.9. Sensor

The Sensor class can be viewed as a composite of components. In order to obtain a complete
description of a detector, it is sometimes useful to combine fields from different Component objects.
For instance, one might wish to use a field map for the electric field, calculate the weighting
field using analytic methods, and use a parameterized 𝐵 field. Superpositions of several electric,
magnetic and weighting fields are also possible.

Components are added using

void AddComponent(Component* comp);
void AddElectrode(Component* comp, std::string label);

While AddComponent tells the Sensor that the respective Component should be included in the
calculation of the electric and magnetic field, AddElectrode requests the weighting field named
label to be used for computing the corresponding signal.

To deactivate (or activate) a component after having added it, the function

void EnableComponent(const unsigned int i, const bool on);

can be used. Components that have been deactivated are not taken into account when calculating
the electric field but are not removed from the list. Similarly,

Chapter 4. Components 68

void EnableMagneticField(const unsigned int i, const bool on);

can be used to deactivate (or activate) the magnetic field of a given component.

To reset the sensor, thereby removing all components and electrodes, use

void Clear();

The total electric and magnetic fields (sum over all components) at a given position are accessible
through the functions ElectricField and MagneticField. The syntax is the same as for the
corresponding functions of the Component classes. Unlike the fields, materials cannot overlap.
The function Sensor::GetMedium, therefore, returns the first valid drift medium found.

The Sensor acts as an interface to the transport classes.

For reasons of efficiency, it is sometimes useful to restrict charge transport, ionization and similar
calculations to a certain region of the detector. This “user area” can be set by

void SetArea(const double xmin, const double ymin, const double zmin,
const double xmax, const double ymax, const double zmax);

xmin, …, zmax corners of the bounding box within which transport is enabled.

Calling SetArea() (without arguments) sets the user area to the envelope of all components (if
such an envelope exists).

In addition, the Sensor class takes care of signal calculations (Chapter 7).

5. Tracks

The purpose of Track... classes is to simulate ionization patterns produced by charged particles
traversing the detector.

The type of the primary particle is set by the function

void SetParticle(std::string particle);

particle name of the particle

Only particles which are sufficiently long lived to leave a track in a detector are considered. A
list of the available particles is given in Table 5.1.

The kinematics of the charged particle can be defined by means of a number of equivalent
methods:

• the total energy (in eV) of the particle,

• the kinetic energy (in eV) of the particle,

• the momentum (in eV/𝑐) of the particle,

• the (dimension-less) velocity 𝛽 = 𝑣/𝑐, the Lorentz factor 𝛾 = 1/√1 − 𝛽2 or the product
𝛽𝛾 of these two variables.

The corresponding functions are

void SetEnergy(const double e);
void SetKineticEnergy(const double ekin);
void SetMomentum(const double p);
void SetBeta(const double beta);
void SetGamma(const double gamma);
void SetBetaGamma(const double bg);

A track is initialized by means of

void NewTrack(const double x0, const double y0, const double z0, const double t0,
const double dx0, const double dy0, const double dz0);

x0, y0, z0 initial position (in cm)

t0 starting time

dx0, dy0, dz0 initial direction vector

The starting point of the track has to be inside an ionizable medium. Depending on the type of
Track class, there can be further restrictions on the type of Medium. If the specified direction
vector has zero length, an isotropic random vector will be generated.

After successful initialization, the “clusters” produced along the track can be retrieved using

69

Chapter 5. Tracks 70

Table 5.1. Available charged particles.

particle mass [MeV/𝑐2] charge

𝑒 electron, e- 0.510998910 −1
𝑒+ positron, e+ 0.510998910 +1
𝜇− muon, mu- 105.658367 −1
𝜇+ mu+ 105.658367 +1
𝜋− pion, pi, pi- 139.57018 −1
𝜋+ pi+ 139.57018 +1
𝐾− kaon, K, K- 493.677 −1
𝐾+ K+ 493.677 +1
𝑝 proton, p 938.272013 +1
𝑝 anti-proton, antiproton, p-bar 938.272013 −1
𝑑 deuteron, d 1875.612793 +1

const std::vector<Cluster>& GetClusters();

In this context, “cluster” refers to the energy loss in a single ionizing collision of the primary
charged particle and the secondary electrons produced in this process. The concrete implementa-
tion of the cluster objects depends on the Track class.

5.1. Heed

The program Heed [44] is an implementation of the photo-absorption ionization (PAI) model. It
was written by I. Smirnov. An interface to Heed is available through the class TrackHeed.

The Cluster objects returned by TrackHeed::GetClusters contain the position and time of
the ionizing collision (member variables x, y, z, t), the transferred energy (member variable
energy), and a vector of Electron objects corresponding to the conduction electrons associated
to the cluster.

In the following snippet, we iterate over the clusters along a track and the conduction electrons
in each cluster.

TrackHeed track;
// ...
double x0 = 0., y0 = 0., z0 = 0., t0 = 0.;
track.NewTrack(x0, y0, z0, t0, 0., 0., 0.);
// Loop over the clusters along the track.
for (const auto& cluster : track.GetClusters()) {

// Loop over the conduction electrons in the cluster.
for (const auto& electron : cluster.electrons) {
// Get the coordinates of the electron.
const double xe = electron.x;
const double ye = electron.y;
const double ze = electron.z;
const double te = electron.t;

}
}

71 Chapter 5. Tracks

5.1.1. Delta electron transport

Heed simulates the energy degradation of 𝛿 electrons and the production of secondary (“conduc-
tion”) electrons using a phenomenological algorithm described in Ref. [44].

TrackHeed retrieves the necessary input parameters - the asymptotic 𝑊 value (eV) and the Fano
factor - from the relevant Medium object. If these parameters are set to zero, Heed uses internal
default values. The default value for the Fano factor is 𝐹 = 0.19.

The transport of 𝛿 electrons can be activated or deactivated using

void EnableDeltaElectronTransport();
void DisableDeltaElectronTransport();

If 𝛿 electron transport is disabled, the number of electrons returned by GetCluster is the number
of “primary” ionisation electrons, i. e. the photo-electrons and Auger electrons. Their kinetic
energies and locations are accessible through the function GetElectron.

If 𝛿 electron transport is enabled (default setting), the function GetElectron returns the
locations of the “conduction” electrons as calculated by the internal 𝛿 transport algorithm of
Heed. Since this method does not provide the energy and direction of the secondary electrons,
the corresponding parameters in GetElectron are not meaningful in this case.

5.1.2. Photon transport

Heed can also be used for simulating x-ray photoabsorption.

Cluster TransportPhoton(const double x0, const double y0, const double z0,
const double t0, const double e0,
const double dx0, const double dy0, const double dz0);

x0, y0, z0, t0 initial position and time of the photon

e0 photon energy in eV

dx0, dy0, dz0 direction of the photon

5.1.3. Magnetic fields

If the sensor has a non-zero magnetic field, TrackHeed will, by default, take the magnetic field
into account for calculating the charged-particle trajectory. In order to explicitly enable or
disable the use of the magnetic field in the stepping algorithm, the functions

EnableMagneticField();
DisableMagneticField();

can be called before simulating a track. Depending on the strength of the magnetic field, it might
be necessary to adapt the limits/parameters used in the stepping algorithm in order to obtain a
smoothly curved trajectory as, for instance, in the example below.

TrackHeed track;
// Get the default parameters.
double maxrange = 0., rforstraight = 0., stepstraight = 0., stepcurved = 0.;

Chapter 5. Tracks 72

track.GetSteppingLimits(maxrange, rforstraight, stepstraight, stepcurved);
// Reduce the step size [rad].
stepcurved = 0.02;
track.SetSteppingLimits(maxrange, rforstraight, stepstraight, stepcurved);

5.2. SRIM

SRIM1 is a program for simulating the energy loss of ions in matter. It produces tables of
stopping powers, range and straggling parameters that can subsequently be imported in Garfield
using the class TrackSrim. The function

bool ReadFile(const std::string& file)

returns true if the SRIM output file was read successfully. The SRIM file contains the following
data

• a list of kinetic energies at which losses and straggling have been computed;

• average energy lost per unit distance via electromagnetic processes, for each energy;

• average energy lost per unit distance via nuclear processes, for each energy;

• projected path length, for each energy;

• longitudinal straggling, for each energy;

• transverse straggling, for each energy.

These can be visualized using the functions

void PlotEnergyLoss();
void PlotRange();
void PlotStraggling();

and printed out using the function TrackSrim::Print(). In addition to these tables, the file
also contains the mass and charge of the projectile, and the density of the target medium. These
properties are also imported and stored by TrackSrim when reading in the file. Unlike in case
of Heed, the particle type therefore does not need to be specified by the user. The user does
however need to set the kinetic energy of the projectile.

TrackSrim tries to generate individual tracks which statistically reproduce the average quantities
calculated by SRIM. Starting with the energy specified by the user, it iteratively

• computes (by interpolating in the tables) the electromagnetic and nuclear energy loss per
unit length at the current particle energy,

• calculates a step with a length over which the particle will produce on average a certain
number of electrons,

• updates the trajectory based on the longitudinal and transverse scatter at the current
particle energy,

1Stopping and Range of Ions in Matter, www.srim.org

www.srim.org

73 Chapter 5. Tracks

Table 5.2. Fluctuation models in TrackSrim.

Model Description

0 No fluctuations
1 Untruncated Landau distribution
2 Vavilov distribution (provided the kinematic parameters are within the range of applicability,

otherwise fluctuations are disabled)
3 Gaussian distribution
4 Combination of Landau, Vavilov and Gaussian models,

each applied in their alleged domain of applicability

• calculates a randomised actual electromagnetic energy loss over the step and updates the
particle energy.

This is repeated until the particle has no energy left or leaves the geometry. The model for
randomising the energy loss over a step can be set using the function

void SetModel(const int m);

m fluctuation model to be used (Table 5.2); the default setting is model 4.

The generation of Vavilov distributed random numbers is based on a C++ implementation of
the CERNLIB G115 procedures for the fast, approximate calculation of functions related to the
Vavilov distribution. The description of the algorithm can be found in Ref. [35].

For sampling the energy loss, TrackSrim needs the electron density of the target material. By
default it is retrieved from the relevant Medium object (and scaled to the mass density given in
the SRIM output file). Alternatively, the user can specify the effective atomic number 𝑍 and
mass number 𝐴 of the target using TrackSrim::SetAtomicMassNumbers.

Transverse and longitudinal straggling can be switched on or off using

void EnableTransverseStraggling(const bool on);
void EnableLongitudinalStraggling(const bool on);

If energy loss fluctuations are used, longitudinal straggling should be disabled. By default,
transverse straggling is switched on and longitudinal straggling is switched off.

SRIM is aimed at low energy nuclear particles which deposit large numbers of electrons in a
medium. The grouping of electrons to a cluster is therefore somewhat arbitrary. By default,
TrackSrim will adjust the step size such that there are on average 100 clusters on the track. If
the user specifies a target cluster size, using

void SetTargetClusterSize(const int n);

the step size will be chosen such that a cluster comprises on average n electrons. Alternatively, if
the user specifies a maximum number of clusters, using

void SetClustersMaximum(const int n);

Chapter 5. Tracks 74

the step size will be chosen such that on average there are n / 2 clusters on the track.

To calculate the number of electrons for given amount of deposited energy, TrackSrim needs
the work function 𝑊 (in eV) and the Fano factor of the target material. By default, TrackSrim
retrieves these parameters from the relevant Medium object. Alternatively, they can be set
explicitly using TrackSrim::SetWorkFunction and TrackSrim::SetFanoFactor.

The Cluster objects returned by TrackSrim::GetClusters contain the location and time of the
cluster (variables x, y, z, t), the energy spent to make the cluster (energy), the ion energy
when the cluster was created (kinetic), and the number of electrons in the cluster (n).

5.3. TRIM

TRIM2 is a Monte Carlo simulation program from the same collection of software packages as
SRIM. It simulates individual ion trajectories in a target (which can be made of several layers)
and the processes following the ion’s energy loss (recoil cascades, displacement damage, etc.).
TRIM typically produces a number of output files. One of them is a file called EXYZ.txt which
lists the position and electronic stopping power for each simulated ion at regular steps in the
ion’s kinetic energy. The energy interval is set by the user.

The class TrackTrim allows one to import these data in Garfield and use them for simulating
tracks. The function for reading ion trajectories from an EXYZ.txt file is

bool ReadFile(const std::string& file, const unsigned int nIons = 0,
const unsigned int nSkip = 0);

file name/path of the EXYZ.txt file to be loaded,

nIons number of ion trajectories to be loaded from the file,

nSkip number of ion trajectories to be skipped at the beginning of the file.

If the value of nIons is zero, TrackTrim will import all ion trajectories included in the file.

When the function NewTrack is called, TrackTrim will generate clusters according to one of
the ion trajectories imported from EXYZ.txt (starting with the first one). Each cluster will
correspond to one energy interval. The number of clusters along a track and the deposited energy
per cluster is therefore controlled by the energy interval specified when running TRIM. The
number of electrons in a cluster is sampled using an algorithm that reproduces the requested
work function (𝑊 value) and Fano factor. At the next call to NewTrack, TrackTrim moves to the
next ion trajectory in the list (if it reaches the end of the list, it rewinds to the first one).

The variables contained in the Cluster objects returned by TrackTrim::GetClusters are the
same as for TrackSrim.

5.4. Degrade

The class TrackDegrade simulates ionisation by primary electrons in a gas and the subsequent
degradation of 𝛿 electrons, Auger electrons and photoelectrons, using an interface to the program
Degrade, developed by S. Biagi. Degrade has many commonalities with Magboltz, in particular
the database of electron-atom/molecule cross-sections.

2TRansport of Ions in Matter

75 Chapter 5. Tracks

While the Degrade program can also be used for simulating X-rays, 𝛽 decay and double 𝛽 decay,
but these features are not (yet) accessible through the TrackDegrade interface at the moment.
It is also worth noting, that the current version of TrackDegrade does not consider the electric
and magnetic fields in the detector.

The Cluster objects returned by TrackDegrade::GetClusters contain the position and time
of the ionizing collision (member variables x, y, z, t), a vector of Electron objects corre-
sponding to the thermalised electrons associated to the cluster. In addition, it also contains a
vector of the 𝛿 electrons and Auger electrons.

TrackDegrade track;
// ...
double x0 = 0., y0 = 0., z0 = 0., t0 = 0.;
double dx0 = 1., dy0 = 0., dz0 = 0.
track.NewTrack(x0, y0, z0, t0, dx0, dy0, dz0);
// Loop over the clusters along the track.
for (const auto& cluster : track.GetClusters()) {

// Loop over the thermalised electrons in the cluster.
for (const auto& electron : cluster.electrons) {
// Get the coordinates and kinetic energy of the electron.
double xe = electron.x;
double ye = electron.y;
double ze = electron.z;
double te = electron.t;
double ee = electron.energy;

}
}

By default, electrons are tracked until their kinetic energy falls below 2 eV. This threshold can
be changed using the function

void SetThresholdEnergy(const double ethr);

If the function

void StoreExcitations(const bool on = true, const double ethr);

is called prior to NewTrack, the excitations (with excitation energy above ethr) produced by the
primary and secondary electrons are also stored in the Cluster object.

6. Charge transport

On a phenomenological level, the drift of charge carriers under the influence of an electric field E
and a magnetic field B is described by the first order equation of motion

̇r = vd(E (r) , B (r)), (6.1)

where vd is the drift velocity. For the solution of (6.1), two methods are available in Garfield++:

• Runge-Kutta-Fehlberg integration (DriftLineRKF), and

• Monte Carlo integration (AvalancheMC).

For accurate simulations of electron trajectories in small-scale structures (with characteristic
dimensions comparable to the electron mean free path), and also for detailed calculations of
ionisation and excitation processes, transporting electrons on a microscopic level – i. e. based on
the second-order equation of motion – is the method of choice. Microscopic tracking of electrons
is dealt with by the class AvalancheMicroscopic.

6.1. Runge-Kutta-Fehlberg integration

This method, implemented in the class DriftLineRKF, calculates a drift line by iterating over
the following steps.

1. Given a starting point x0, the velocity at the starting point, and a time step Δ𝑡, compute
two estimates of the step to the next point on the drift line,

• Δ𝑣I =
2

∑
𝑘=0

𝐶I,𝑘v𝑑 (x𝑘), accurate to second order, and

• Δ𝑣II =
3

∑
𝑘=0

𝐶II,𝑘v𝑑 (x𝑘), accurate to third order.

These two estimates are based on the drift velocity at the starting point and the velocity
at three new locations

x𝑘 = x0 + Δ𝑡
𝑘−1
∑
𝑖=0

𝛽𝑘,𝑖v𝑑 (x𝑖) .

The values of the coefficients are shown in Table 6.1.

Table 6.1. Coefficients of the Runge-Kutta-Fehlberg formula [46].

𝛽𝑘,𝑖

𝑘
𝑖 0 1 2

1 1
4

2 −189
800

729
800

3 214
891

1
33

650
891

𝑘 𝐶𝐼,𝑘 𝐶𝐼𝐼,𝑘

0 214
891

533
2106

1 1
33

2 650
891

800
1053

3 −1
78

76

77 Chapter 6. Charge transport

2. The time step is updated by comparing the second and third order estimates with the
requested accuracy

Δ𝑡′ = √ 𝜀Δ𝑡
|Δ𝑣I − Δ𝑣II|

.

3. The step is repeated if

• the time step shrinks by more than a factor five,

• the step size exceeds the maximum step length allowed (if such a limit is set),

4. The position is updated with the second order estimate.

5. The velocity is updated according to the end-point velocity of the step, which is one of the
three velocity vectors that were computed under 1.

The initial time step is estimated using Δ𝑡 = 𝜀/ |v𝑑 (x0)|. The parameter 𝜀 used in this initial
estimate and in step 2 of the above algorithm, can be set using

void SetIntegrationAccuracy(const double eps);

When traversing a large area with a very smooth field, the step size becomes large. If this is not
desired, for instance because there is a fine structure behind the smooth area, then one should
limit the step size using

void SetMaximumStepSize(const double ms);

The maximum step size is recommended to be of order 1/10−1/20 of the distance to be traversed.
The default behaviour (no limit on the step size) can be reinstated using

void UnsetMaximumStepSize();

By default, the drift line calculation is aborted if the drift line makes a bend sharper than 90∘.
Such bends rarely occur in smooth fields, the most common case is a drift line that tries to cross
a saddle point. This check can be switched on or off using

void RejectKinks(const bool on = true);

During the evaluation of the velocities v𝑑 (x𝑘) for the next step, checks are made to ensure
that none of the probe points x𝑘 are outside the active area and that no wire was crossed. If
a wire has been crossed during the step, another algorithm for stepping towards a wire takes
over. The stepping towards the wire also starts when the distance between the particle position
and a wire is less than 𝑛 times the wire radius. The factor 𝑛 (“trap radius”) can be set in
ComponentAnalyticField when defining the wire. If one of the points along the step is outside
the active area, the drift line is terminated by doing a last linear step towards the boundary.

Drift line calculations are started using

bool DriftElectron(const double x0, const double y0, const double z0, const double t0);
bool DriftHole(const double x0, const double y0, const double z0, const double t0);
bool DriftIon(const double x0, const double y0, const double z0, const double t0);

Chapter 6. Charge transport 78

x0, y0, z0, t0 initial position and time

The function

bool DriftPositron(const double x0, const double y0, const double z0, const double t0);

computes an electron drift line, but assuming that the electron has positive charge (which can
be useful for determining isochrons). Analogously, the function

bool DriftNegativeIon(const double x0, const double y0, const double z0, const double t0);

computes an ion drift line, assuming that the ion has negative charge.

After calculating a drift line, the multiplication and loss factors

exp(∫ 𝛼d𝑠) , exp(− ∫ 𝜂d𝑠)

along the drift line can be obtained using

void GetGain(const double eps = 1.e-4);
void GetLoss(const double eps = 1.e-4);

eps parameter determining the accuracy of the integration.

Both functions use an adaptive Simpson-style integration.

Similarly, the function

void GetArrivalTimeSpread(const double eps = 1.e-4);

computes the 𝜎 of the arrival time distribution by integrating quadratically the ratio of longitudinal
diffusion coefficient and drift velocity over the drift line,

𝜎2 = ∫ (𝐷𝐿/𝑣D)2 d𝑠.

The points along the most recent drift line are accessible through the functions

size_t GetNumberOfDriftLinePoints() const;
void GetDriftLinePoint(const size_t i, double& x, double& y, double& z, double& t) const;

i index of the point.

x, y, z, t coordinates and time of the point.

If one is simply interested in the end point and status flag of the current drift line, the func-
tion

void GetEndPoint(double& x, double& y, double& z, double& t, int& st) const;

can be used. A list of the status codes is given in Table 6.2.

By default, the induced current is calculated for each drift line. This can be activated or
deactivated using

79 Chapter 6. Charge transport

void EnableSignalCalculation(const bool on = true);

For electron drift lines, multiplication is by default taken into account in the signal calculation.
For this purpose, after calculating a drift line the number of electrons and ions at each point of
the line is calculated by integrating the Townsend and attachment coefficient along the line. For
a given starting point, the number of electrons at the end of the drift line is thus given by

𝑛𝑒 = exp(∫ (𝛼 − 𝜂)d𝑠) .

The multiplication factor can be set explicitly using

void SetGainFluctuationsFixed(const double gain = -1.);

gain multiplication factor to be used. If the provided value is < 1, the multiplication factor
obtained by integrating 𝛼 − 𝜂 along the drift line is used instead (as is the default).

Using

EnableAvalanche(const bool on);

the simulation of avalanches for electron drift lines can be switched on or off.

In order to take fluctuations of the avalanche size into account in the signal calculation, the
number of electrons in the avalanche can be sampled from a Pólya distribution [1]

𝑛𝑃𝑛 = (𝜃 + 1)𝜃+1

Γ (𝜃 + 1)
(𝑛

𝑛
)

𝜃
e−(𝜃+1)𝑛/𝑛,

where 𝑃𝑛 is the probability that the avalanche comprises 𝑛 electrons, 𝑛 is the mean avalanche
size, and 𝜃 is a parameter controlling the shape of the distribution. For 𝜃 = 0 one obtains
an exponential distribution, while with increasing 𝜃 the distribution becomes more and more
“rounded”. The simulation of gain fluctuations can be enabled using the function

void SetGainFluctuationsPolya(const double theta, const double mean = -1.);

theta shape parameter 𝜃 of the Pólya distribution.

mean mean avalanche size 𝑛. If the provided value is < 1, the multiplication factor obtained by
integrating 𝛼 − 𝜂 along the drift line is used instead (as is the default).

By default, DriftLineRKF also simulates the ion tail, i. e. the signal due to the ions created in
an avalanche, provided that the drift medium has ion mobility data. Using the function

EnableIonTail(const bool on);

the simulation of the ion tail can be switched on or off explicitly.

The signal component due to negative ions created in the avalanche is not simulated by default,
and needs to be requested explicitly using

EnableNegativeIonTail(const bool on = true);

Chapter 6. Charge transport 80

6.2. Monte Carlo integration

In the class AvalancheMC, Eq. (6.1) is integrated in a stochastic manner:

• a step of length Δ𝑠 = 𝑣dΔ𝑡 in the direction of the drift velocity vd at the local electric
and magnetic field is calculated (with either the time step Δ𝑡 or the distance Δ𝑠 being
specified by the user);

• a random diffusion step is sampled from three uncorrelated Gaussian distributions with
standard deviation 𝜎𝐿 = 𝐷𝐿

√
Δ𝑠 for the component parallel to the drift velocity and

standard deviation 𝜎𝑇 = 𝐷𝑇
√

Δ𝑠 for the two transverse components;

• the two steps are added vectorially and the location is updated.

The functions for setting the step size are

void SetTimeSteps(const double d = 0.02);
void SetDistanceSteps(const double d = 0.001);
void SetCollisionSteps(const int n = 100);

In the first case the integration is done using fixed time steps (default: 20 ps), in the second case
using fixed distance steps (default: 10 µm). Calling the third function instructs the class to do
the integration with exponentially distributed time steps with a mean equal to a multiple of the
“collision time”

𝜏 = 𝑚𝑣𝑑
𝑞𝐸

.

The third method is activated by default.

Instead of making simple straight-line steps (using the drift velocity vector at the starting point
of a step), the end point of a step can be calculated using a (second-order) Runge-Kutta-Fehlberg
method. This feature can be activated using

void EnableRKFSteps(const bool on = true);

The average velocity v over a step Δ𝑡 is then calculated using

v =
2

∑
𝑘=0

𝐶𝑘v𝑑 (x𝑘) , x1 = x0 + Δ𝑡𝛽1,0v𝑑 (x0) , x2 = x0 + Δ𝑡 (𝛽2,0v𝑑 (x0) + 𝛽2,1v𝑑 (x1)) ,

where x0 is the starting point of the step. The values of the coefficients 𝐶𝑘 and 𝛽𝑘,𝑖 are given in
Table 6.1.

If the electric field or drift speed is zero, the algorithm switches to diffusion-only steps based on
the low-field mobility.

Drift line calculations are started using

bool DriftElectron(const double x, const double y, const double z, const double t);
bool DriftHole(const double x, const double y, const double z, const double t);
bool DriftIon(const double x, const double y, const double z, const double t);

x, y, z, t initial position and time

The trajectory can be retrieved using

81 Chapter 6. Charge transport

size_t GetNumberOfDriftLinePoints() const;
void GetDriftLinePoint(const size_t i, double& x, double& y, double& z, double& t);

The calculation of an avalanche initiated by an electron, a hole or an electron-hole pair is done
using

bool AvalancheElectron(const double x, const double y, const double z,
const double t, const bool hole = false);

bool AvalancheHole(const double x, const double y, const double z,
const double t, const bool electron = false);

bool AvalancheElectronHole(const double x, const double y, const double z,
const double t);

The flags hole and electron specify whether the drift and multiplication of the holes/ions
(electrons) created in the avalanche should be simulated.

The trajectories of the electrons in the avalanche can be retrieved using

const std::vector<EndPoint>& GetElectrons();

where EndPoint is a struct containing an integer status code indicating why the tracking of the
electron was stopped and a vector of points along the drift line:

struct EndPoint {
int status;
std::vector<Point> path;

};

Analogous functions are available for holes and (positive and negative) ions.

For debugging purposes, attachment and diffusion can be switched off using

void DisableAttachment();
void DisableDiffusion();

A time interval can be set using

void SetTimeWindow(const double t0, const double t1);

t0 lower limit of the time window

t1 upper limit of the time window

If a time window is set, only charge carriers with a time coordinate 𝑡 ∈ [𝑡0, 𝑡1] are tracked. If the
time coordinate of a particle crosses the upper limit, it is stopped and assigned the status code
-17. Slicing the calculation into time steps can be useful for instance for making a movie of the
avalanche evolution or for calculations involving space charge. Another useful function for that
purpose is

bool ResumeAvalanche(const bool electron = true, const bool hole = true);

Chapter 6. Charge transport 82

electron,hole flags to switch off the electron (hole) component of the avalanche

which instructs AvalancheMC to continue the avalanche simulation from the most recent set of
end points. Before calling ResumeAvalanche, one can “manually” add electrons, holes, or ions to
the list of charge carriers to be transported.

void AddElectron(const double x, const double y, const double z, const double t);
void AddHole(const double x, const double y, const double z, const double t);
void AddIon(const double x, const double y, const double z, const double t);

The time window can be removed using

void UnsetTimeWindow();

Using the function

void EnableProjectedPathIntegration(const bool on = true);

one can request the Townsend and attachment coefficients to be projected onto the local drift
velocity vector when integrating them over drift path segments. By default, this feature is
switched on. The function

void EnableAvalancheSizeLimit(const unsigned int size);

sets an upper limit to the number of electrons in an avalanche can be imposed.

6.3. Microscopic tracking

In the microscopic tracking approach – implemented at present only for electrons – a particle is
followed from collision to collision. As input, it requires a table of the collision rates 𝜏−1

𝑖 (𝜖) for
each scattering process 𝑖 as function of the electron energy 𝜖. For gases, these data are provided
by the class MediumMagboltz. Between collisions, an electron is traced on a classical vacuum
trajectory according to the local electric (and optionally magnetic) field. The duration Δ𝑡 of a
free-flight step is controlled by the total collision rate 𝜏−1 (𝜖) = ∑𝑖 𝜏−1

𝑖 (𝜖). The sampling of Δ𝑡
of a free-flight step is done using the “null-collision” method [43], which accounts for the change
in electron energy during the step. After the step, the energy, direction, and position of the
electron are updated and the scattering process to take place is sampled based on the relative
collision rates at the new energy 𝜖′. The energy and direction of the electron are subsequently
updated according to the type of collision.

In Garfield++, the microscopic tracking method is implemented in the class AvalancheMicroscopic.
A calculation is started by means of

void AvalancheElectron(const double x, const double y, const double z,
const double t, const double e,
const double dx = 0., const double dy = 0., const double dz = 0.);

x, y, z, t initial position and time

e initial energy (eV)

83 Chapter 6. Charge transport

Table 6.2. Status codes for the termination of drift lines.

status code meaning

-1 particle left the drift area
-3 calculation abandoned (error, should not happen)
-5 particle not inside a drift medium
-7 attachment
-8 sharp kink (only for RKF)
-16 energy below transport cut
-17 outside the time window

dx, dy, dz initial direction

If the length of the direction vector is zero, the initial direction is randomized.

After the calculation is finished, the number of electrons (ne) and ions (ni) produced in the
avalanche can be retrieved using

void GetAvalancheSize(int& ne, int& ni);

Information about the “history” of each avalanche electron can be retrieved using

const std::vector<Electron>& GetElectrons();

where Electron is a struct containing an integer status code indicating why the simulation of
the electron drift line was terminated, a vector of points along the trajectory and the total path
length.

struct Electron {
int status = 0;
std::vector<Point> path;
double pathLength = 0.;

};

A list of status codes is given in Table 6.2. The Point objects contain the location (x, y, z),
time (t), kinetic energy (energy), and direction vector (kx, ky, kz) of the electron.

The function

bool DriftElectron(const double x, const double y, const double z, const double t,
const double e, const double dx, const double dy, const double dz);

traces only the initial electron but not the secondaries produced along its drift path (the input
parameters are the same as for AvalancheElectron).

The electron energy distribution can be extracted in the following way:

AvalancheMicroscopic aval;
// Make a histogram (100 bins between 0 and 100 eV).
TH1F hEnergy("hEnergy", "Electron energy", 100, 0., 100.);
// Pass the histogram to the avalanche class.

Chapter 6. Charge transport 84

aval.EnableElectronEnergyHistogramming(&hEnergy);

After each collision, the histogram is filled with the current electron energy.

If the sensor has a non-zero magnetic field, AvalancheMicroscopic will by default use a more
complicated stepping algorithm which takes the effect of the 𝐵 field on the electron trajectory
into account. In order to explicitly switch the use of magnetic fields on or off one can use the
function

void EnableMagneticField(const bool on);

The default stepping algorithm evaluates the electric field only at the start of a free-flight step,
assuming that it is constant throughout the step. This is an exact solution for uniform fields,
and usually a good approximation if the electric field does not change drastically over a step. To
improve the accuracy of the free-flight calculation, in particular at low gas pressure, a stepping
algorithm based on Runge-Kutta-Nyström integration can be requested using

void EnableRKNSteps(const bool on = true);

The error tolerance and minimum step size in the algorithm can be set using

void SetRKNTolerance(const double sTol = 1.e-10,
const double sMinStep = 1.e-5);

Using

void EnableAvalancheSizeLimit(const unsigned int size);

an upper limit to the size of an electron avalanche can be imposed. After the avalanche has
reached the specified max. size, no further secondaries are added to the stack of electrons to be
transported.

Like in AvalancheMC a time window can be set/unset using

void SetTimeWindow(const double t0, const double t1);
void UnsetTimeWindow();

An energy threshold for transporting electrons can be applied using

void SetElectronTransportCut(const double cut);

cut energy threshold (in eV)

The tracking of an electron is aborted if its energy falls below the transport cut. This option can
be useful for 𝛿 electron studies in order to stop the calculation once the energy of an electron
is below the ionization potential of the gas. The transport cut can be removed by setting the
threshold to a negative value. By default, no cut is applied.

In order to extract information from the avalanche on a collision-by-collision basis, a number of
callback functions (“user handles”) are available.

85 Chapter 6. Charge transport

void SetUserHandleStep(void (*f)(double x, double y, double z,
double t, double e,
double dx, double dy, double dz,
bool hole));

void UnsetUserHandleStep();
void SetUserHandleCollision(void (*f)(double x, double y, double z, double t,

int type, int level, Medium* m,
double e0, double e1,
double dx0, double dy0, double dz0,
double dx1, double dy1, double dz1));

void UnsetUserHandleCollision();
void SetUserHandleAttachment(void (*f)(double x, double y, double z,

double t,
int type, int level, Medium* m));

void UnsetUserHandleAttachment();
void SetUserHandleInelastic(void (*f)(double x, double y, double z,

double t,
int type, int level, Medium* m));

void UnsetUserHandleInelastic();
void SetUserHandleIonisation(void (*f)(double x, double y, double z,

double t,
int type, int level, Medium* m));

void UnsetUserHandleIonisation();

The function specified in SetUserHandleStep is called prior to each free-flight step. The
parameters passed to this function are

x, y, z, t position and time,

e energy before the step

dx, dy, dz direction,

hole flag indicating whether the particle is an electron or a hole.

The “user handle” function set via SetUserHandleCollision is called every time a real collision
(as opposed to a null collision) occurs. The “user handle” functions for attachment, ionisation,
and inelastic collisions are called each time a collision of the respective type occurs. In this
context, inelastic collisions also include excitations. The parameters passed to these functions
are

x, y, z, t the location and time of the collision,

type the type of collision (see Table 3.2),

level the index of the cross-section term (as obtained from the Medium),

m a pointer to the current Medium.

In the function set using SetUserHandleCollision, the energy and the direction vector before
and after the collision are available in addition.

In the following example we want to retrieve all excitations happening in the avalanche.

void userHandle(double x, double y, double z, double t,
int type, int level, Medium* m) {

Chapter 6. Charge transport 86

// Check if the collision is an excitation.
if (type != 4) return;
// Do something (e. g. fill a histogram, simulate the emission of a VUV photon)
...

}

int main(int argc, char* argv[]) {

// Setup gas, geometry, and field
...
AvalancheMicroscopic aval;
...
aval.SetUserHandleInelastic(userHandle);
double x0 = 0., y0 = 0., z0 = 0., t0 = 0.;
double e0 = 1.;
aval.AvalancheElectron(x0, y0, z0, t0, e0, 0., 0., 0.);
...

}

6.4. Visualizing drift lines

For plotting drift lines and tracks the class ViewDrift can be used. After attaching a ViewDrift
object to a transport class, e. g. using

void AvalancheMicroscopic::EnablePlotting(ViewDrift* view, const size_t nColl = 100);
void AvalancheMC::EnablePlotting(ViewDrift* view);
void DriftLineRKF::EnablePlotting(ViewDrift* view);
void Track::EnablePlotting(ViewDrift* view);

it will store the trajectories which are calculated by the respective transport class.

To actually draw the trajectories, the function

void ViewDrift::Plot();

needs to be called.

In case of AvalancheMicroscopic, the second argument of EnablePlotting (nColl) sets the
number of collisions to be skipped between successive points on the plot (by default, every 100th
collision is plotted). Note that this setting does not affect the transport of the electron as such,
the electron is always tracked rigorously through single collisions.

6.5. Visualizing isochrons

For drift chambers, it is useful to determine the contours of equal drift time to a wire. These
so-called isochrons can be calculated and drawn using the class ViewIsochrons. The component
or sensor from which to retrieve the field is set using

void SetComponent(Component* c);

87 Chapter 6. Charge transport

or

void SetSensor(Sensor* s);

The function

void DriftElectrons(const bool positive = false);

instructs the class to compute isochrons using electron drift lines. If the flag positive is set to
true, the electrons are drifted with positive charge, which is useful for calculating isochrons of
wires that attract electrons.

By calling

void DriftIons(const bool negative = false);

one requests drift lines of (positive or negative) ions.

The calculation of the drift lines and equal time contours and their visualization is done by the
function

void PlotIsochrons(const double tstep,
const std::vector<std::array<double, 3> >& points, const bool reverse = false,
const bool colour = false, const bool markers = false, const bool plotDriftLines = true);

tstep time interval between isochron lines,

points list of starting points from which to simulate drift lines,

reverse flag to measure the drift time from the end points of the drift lines (true) or from the
starting points (false),

colour requests drawing the contour lines using the currently active colour palette,

markers flag to draw markers at the points on the isochrons (true) or draw the isochron as lines
(false),

plotDriftLines requests plotting of the drift lines together with the isochrons.

The calculation of the drift lines is done using DriftLineRKF.

The appearance of the isochrons is affected by a number of additional parameters. By default,
the algorithm tries to order the points at equal time such that the isochrons appear as reasonably
smooth lines. This sorting step can be switched off or on using

void EnableSorting(const bool on = true);

When an isochron appears to be more or less circular, its points are ordered by increasing angle
with respect to the centre of gravity. If the isochron, on the other hand, seems to be more or less
linear, the points are ordered along the longest principal axis of the distribution. Whether the
set is circular or linear is decided by computing the RMS in the two principal axes of the point
distribution. If the ratio of these two numbers exceeds a threshold then the isochron is assumed
to be linear, otherwise circular. This parameter (which defaults to 3) can be set using

Chapter 6. Charge transport 88

void SetAspectRatioSwitch(const double ar);

Isochrons that appear to be circular are closed if the largest distance between two points does
not exceed a certain fraction of the total length of the isochron. This threshold (initially set to
0.2) can be modified using

void SetLoopThreshold(const double thr);

Points on an isochron are only joined if they are less than a certain fraction away from each
other on the screen. Points that can not be connected are shown by a marker. This fraction
(initial value: 0.2) can be set using

void SetConnectionThreshold(const double thr);

By default, points on an isochron are also not joined if their connecting line crosses a drift line.
This feature can be switched on or off using

void CheckCrossings(const bool on = true);

7. Signals

Signals are calculated using the Shockley-Ramo theorem [42, 32]. The current 𝑖 (𝑡) induced by a
particle with charge 𝑞 at a position r moving at a velocity v is given by

𝑖 (𝑡) = −𝑞v ⋅ E𝑤 (r) , (7.1)

where E𝑤 is the so-called weighting field for the electrode to be read out and the charge induced
by particle moving from r1 to r2 is given by

𝑡2

∫
𝑡1

𝑖 (𝑡) d𝑡 = 𝑞 [𝜙𝑤 (r2) − 𝜙𝑤 (r1)] , (7.2)

where 𝜙𝑤 is the weighting potential.

The basic steps for calculating the current induced by the drift of electrons and ions/holes
are:

1. Prepare the weighting field and/or weighting potential for the electrode to be read out.
This step depends on the field calculation technique (i. e. the type of Component) that is
used (see Chapter 4).

2. Tell the Sensor that you want to use this weighting field/potential for the signal calculation.

void Sensor::AddElectrode(Component* cmp, std::string label);

where cmp is a pointer to the Component which calculates the weighting field/potential,
and label (in our example "readout") is the name you have assigned to the weighting
field/potential in the previous step.

3. Set the binning for the signal calculation.

void Sensor::SetTimeWindow(const double tmin, const double tstep, const int nbins);

The first parameter in this function is the lower time limit (in ns), the second one is the
bin width (in ns), and the last one is the number of time bins.

4. The Sensor then records and accumulates the signals of all avalanches and drift lines which
are simulated.

5. The calculated signal can be retrieved using

double Sensor::GetSignal(const std::string label, const int bin);
double Sensor::GetElectronSignal(const std::string label, const int bin);
double Sensor::GetIonSignal(const std::string label, const int bin);

89

Chapter 7. Signals 90

The functions GetElectronSignal and GetIonSignal return the signal induced by negative
and positive charges, respectively. GetSignal returns the sum of both electron and hole
signals.

6. After the signal of a given track is finished, call

void Sensor::ClearSignal();

to reset the signal to zero.

The method

void Sensor::PlotSignal(const std::string& label, TPad* pad);

plots the (total) signal for the electrode with identifier label on a pad. Internally, this method
uses the class ViewSignal. By default, the function

void ViewSignal::PlotSignal(const std::string& label,
const std::string& optTotal = "t",
const std::string& optPrompt = "",
const std::string& optDelayed = "",
const bool same = false);

produces the same plot as Sensor::PlotSignal. The three option strings can be used for
specifying the components of the signal to be included in the plot. If optTotal is set to tei,
the electron-induced signal, the signal induced by ions (or holes) and the sum of the two will be
shown. Analogously, the option strings optPrompt and optDelayed define which components (if
any) of the prompt and delayed part of the signal should be shown.

As an illustration of the above recipe consider the following example.

// Electrode label
const std::string label = "readout";
// Setup the weighting field.
// In this example we use a FEM field map.
ComponentAnsys123 fm;
...
fm.SetWeightingField("WPOT.lis", label);

Sensor sensor(&fm);
sensor.AddElectrode(&fm, label);
// Setup the binning (0 to 100 ns in 100 steps).
const double tStart = 0.;
const double tStop = 100.;
const int nSteps = 100;
const double tStep = (tStop - tStart) / nSteps;

AvalancheMicroscopic aval(&sensor);
// Calculate some drift lines.
...
// Plot the induced current.
TCanvas* cS = new TCanvas("cS", "Induced current", 600, 600);
sensor.PlotSignal(label, cS);

91 Chapter 7. Signals

All three transport classes (DriftLineRKF, AvalancheMC, AvalancheMicroscopic) offer the
choice between using the weighting potential or the weighting field for computing the induced
current. The method to be used can be selected using

void DriftLineRKF::UseWeightingPotential(const bool on = true);
void AvalancheMC::UseWeightingPotential(const bool on = true);
void AvalancheMicroscopic::UseWeightingPotential(const bool on = true);

The weighting potential method (which is the default) should be used if one wants to ensure
that the integral of the current is equal to the collected charge. It takes 𝜙𝑤 at the start and end
of each step 𝑗 → 𝑗 + 1 along the drift path and calculates the average current 𝑞Δ𝜙𝑤/ (𝑡𝑗+1 − 𝑡𝑗).
For electron drift lines calculated using DriftLineRKF, 𝑞 is weighted by the avalanche size at
this drift line step.

The implementations of the weighting field method are slightly different for DriftLineRKF,
AvalancheMC, and AvalancheMicroscopic. For drift lines calculated using AvalancheMicroscopic,
the signal is assumed to be constant between subsequent drift line points and the average velocity
v = (x𝑗+1 − x𝑗) / (𝑡𝑗+1 − 𝑡𝑗) along a drift line segment is used. By default, the weighting field is
evaluated at the mid-point of a drift line segment. Using

void AvalancheMicroscopic::EnableWeightingFieldIntegration(const bool on = true);

one can request 6-point Gaussian integration of the weighting field over a drift line segment.

For drift lines calculated using DriftLineRKF or AvalancheMC, the times 𝑡𝑗, coordinates r𝑗 and
drift velocities v𝑗 at each point along the drift line are taken and the induced current

𝑖𝑗 = −𝑞E𝑤 (r𝑗) ⋅ v𝑗

at these points is computed. In order to calculate the average current in each time bin, the
array of (𝑡𝑗, 𝑖𝑗) is interpolated (linearly) and then integrated using Simpson’s rule over 2𝑛avg + 1
points. The parameter 𝑛avg defaults to 2 for DriftLineRKF and 1 for AvalancheMC and can be
set using

void DriftLineRKF::SetSignalAveragingOrder(const unsigned int navg);
void AvalancheMC::SetSignalAveragingOrder(const unsigned int navg);

7.1. Readout electronics

In order to model the signal-processing by the front-end electronics, the “raw signal” – i.e. the
induced current – can be convoluted with a so-called “transfer function” (often also referred to
as delta response function). The transfer function to be applied can be set using

void Sensor::SetTransferFunction(std::function<double(double)> f);

where f is a function provided by the user which takes a double as an argument and returns a
double, or using

void Sensor::SetTransferFunction(const std::vector<double>& times,
const std::vector<double>& values);

Chapter 7. Signals 92

in which case the transfer function will be calculated by interpolation of the values provided
in the table. A third option is to use a predefined expression, implemented in the helper class
Shaper. Its constructor,

Shaper(const unsigned int n, const double tau, const double g, std::string shaperType);

takes four arguments: 𝑛 is the order of the shaper, 𝜏 is the time constant, 𝑔 is the gain factor,
and shaperType is either "unipolar" or "bipolar". In the first case (unipolar shaper), the
transfer function is given by

𝑓 (𝑡) = 𝑔 exp (𝑛) (𝑡
𝑡𝑝

)
𝑛

exp (−𝑡/𝜏) , 𝑡𝑝 = 𝑛𝜏,

while for a bipolar shaper the expression

𝑓 (𝑡) = 𝑔 exp (𝑟)√
𝑛

(𝑛 − 𝑡
𝜏

) (𝑡
𝑡𝑝

)
𝑛−1

exp (−𝑡/𝜏) , 𝑡𝑝 = 𝑟𝜏, 𝑟 = 𝑛 −
√

𝑛.

is used. The normalization of these expressions is chosen such that the value of the transfer
function at the peaking time 𝑡 = 𝑡𝑝 is unity. In order to use a transfer function provided by a
Shaper class, one should call

Sensor::SetTransferFunction(Shaper& shaper);

The presently stored signal can be convoluted with the transfer function (specified using one of
the methods above) using

bool Sensor::ConvoluteSignal(const std::string& label);

label name of the electrode

The function

bool Sensor::ConvoluteSignals();

convolutes the signals of all electrodes with the transfer function.

As an example, consider the following transfer function

𝑓 (𝑡) = 𝑡
𝜏
exp (1 − 𝑡/𝜏) , 𝜏 = 25 ns,

i.e. a unipolar shaper with 𝑛 = 1. The two code snippets below illustrate different methods for
applying this transfer function to the induced signal. In the first one, we pass a pointer to a
C-style function to the Sensor.

double transfer(double t) {
constexpr double tau = 25.;
return (t / tau) * exp(1 - t / tau);

}

int main(int argc, char* argv[]) {

93 Chapter 7. Signals

// Setup component, media, etc.
// ...
Sensor sensor;
sensor.SetTransferFunction(transfer);
// Calculate the induced current.
// ...
// Apply the transfer function.
sensor.ConvoluteSignals();
// ...

}

In the second one, we use a Shaper object.

int main(int argc, char* argv[]) {

// ...
Shaper shaper(1, 25., 1., "unipolar");
Sensor sensor;
sensor.SetTransferFunction(shaper);
// ...
sensor.ConvoluteSignals();
// ...

}

7.1.1. Noise

Prior to convoluting the induced current with a transfer function, one can add a random noise
component to the signal using

void AddWhiteNoise(const double enc, const bool poisson = true, const double q0 = 1.);

enc desired equivalent noise charge (ENC) of the convoluted signal,

poisson flag whether to sample the number of noise pulses from a Poisson distribution, or to
sample the noise charge in each bin from a Gaussian distribution,

q0 amplitude of the noise delta pulses (in electrons).

The algorithm is based on the fact that white current noise is equivalent to a random sequence
of delta current pulses with large frequency 𝜈 and with constant amplitude 𝑞0. When processing
this signal by an amplifier with transfer function 𝑓 (𝑡), with a peak normalized to unity, the
variance of the output signal becomes

𝜈𝑞2
0 ∫ 𝑓 (𝑡)2 d𝑡.

We want this to be equivalent to the ENC2, which defines

𝜈 = 1
𝑞2

0

ENC2

∫ 𝑓 (𝑡)2 d𝑡
.

The total number of current delta pulses in a period of time Δ𝑡 is Poisson distributed with a mean
𝜈Δ𝑡 and a standard deviation

√
𝜈Δ𝑡. With the flag poisson set to true, a Poisson-distributed

number of current pulses is added to the signal in the time window.

Chapter 7. Signals 94

For large frequencies, the Poisson distribution becomes a Gaussian distribution, so the standard
deviation of charge in a time bin Δ𝑡 is

𝜎𝑞 = 𝑞0
√

𝜈Δ𝑡.

With the flag poisson set to false, a Gaussian-distributed noise charge is added to each signal
bin.

7.2. Delayed signals

For detectors with resistive elements, the induced signal as function of time is not only given by
the movement of the charges in the drift medium but also by the time dependent reaction of the
resistive materials. Computing the induced current in such a configuration requires an extended
version of the Ramo-Shockley theorem,

𝑖 (𝑡) = −𝑞
𝑡

∫
0

d𝑡′H [x (𝑡′) , 𝑡 − 𝑡′] ⋅ ẋ (𝑡′) , (7.3)

where
H𝑤 (x, 𝑡) = −∇𝜕𝜙𝑤 (x, 𝑡)

𝜕𝑡
is the time-dependent weighting vector.

The time-dependent weighting potential 𝜙𝑤 (x, 𝑡) can be written as the sum of a static prompt
component and a dynamic delayed component

𝜙𝑤 (x, 𝑡) = 𝜙𝑝
𝑤 (x) + 𝜙𝑑

𝑤 (x, 𝑡) , where 𝜙𝑑
𝑤 (x, 0) = 0. (7.4)

We can then write Eq. (7.3) as

𝑖 (𝑡) = − 𝑞E𝑤 (x (𝑡)) ⋅ ẋ (𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟
direct induction

− 𝑞
𝑡

∫
0

d𝑡′H𝑑
𝑤 [x (𝑡′) , 𝑡 − 𝑡′] ⋅ ẋ (𝑡′)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reaction from resistive material

. (7.5)

The computation of the delayed component of the induced current, i. e. the second term in
Eq. 7.5, can be activated or deactivated using the function

void Sensor::EnableDelayedSignal(const bool on);

To be able to compute the delayed component, the dynamic weighting potential or weighting field
of the electrode must be defined. The method for doing so depends on the type of Component. At
present, ComponentComsol, ComponentGrid, ComponentTcad2d, ComponentTcad3d and ComponentUser
support time-dependent weighting fields/potentials.

A. Units and constants

The basic units are cm for distances, g for (macroscopic) masses, and ns for times. Particle
energies, momenta and masses are expressed in eV, eV/𝑐 and eV/𝑐2, respectively. For example,
the electron mass is given in eV/𝑐2, whereas the mass density of a material is given in g/cm3.
The mass of an atom is specified in terms of the atomic mass number 𝐴.

There are a few exceptions from this system of units, though.

• The unit for the magnetic field B corresponding to the above system of units (10−5 Tesla)
is impractical. Instead, magnetic fields are expressed in Tesla.

• Pressures are specified in Torr.

• Electric charge is expressed in fC.

A summary of commonly used quantities and their units is given in Table A.1.

The values of the physical constants used in the code are defined in the file FundamentalConstants.hh.

95

Appendix A. Units and constants 96

Table A.1. Physical units.

physical quantity unit

length cm
mass g
time ns
temperature K
electric potential V
electric charge fC

energy eV
pressure Torr
electric field V / cm
magnetic field Tesla
electric current fC / ns
angle rad

B. Gases

Table B.1 shows a list of the gases available in the current version of Magboltz. The star rating
represents an estimate of the reliability of the cross-section data for the respective gas. A
rating of “5*” indicates a detailed, well-validated description of the cross-sections, while “2*”
indicates a low quality, that is a coarse modelling of the cross-sections associated with large
uncertainties.

chem. symbol name rating
4He helium 5*
3He helium-3 5*
Ne neon 5*
Ar argon 5*
Kr krypton 4*
Xe xenon 4*

Cs caesium 2*
Hg mercury 2*

H2 hydrogen 5*
para H2 para hydrogen 5*
D2 deuterium 5*
ortho D2 ortho deuterium 4*
N2 nitrogen 5*
O2 oxygen 5*
F2 fluorine 2*

CO carbon monoxide 5*
NO nitric oxide 2*

H2O water 5*
CO2 carbon dioxide 5*
N2O nitrous oxide 4*
O3 ozone 3*
H2S hydrogen sulfide 2*
COS carbonyl sulfide 2*
CS2 carbon disulfide 2*

CH4 methane 5*
CD4 deuterated methane 4*
C2H6 ethane 5*
C3H8 propane 4*
nC4H10 n-butane 4*
iC4H10 isobutane 4*
nC5H12 n-pentane 4*
neo-C5H12 neopentane 4*
C2H4 ethene 5*

97

Appendix B. Gases 98

C2H2 acetylene 4*
C3H6 propene 4*
cC3H6 cyclopropane 4*

CH3OH methanol 4*
C2H5OH ethanol 4*
C3H7OH isopropanol 3*
nC3H7OH n-propanol 3*
C3H8O2 methylal 2*
C4H10O2 DME 5*

CF4 tetrafluoromethane 5*
CHF3 fluoroform 3*
C2F6 hexafluoroethane 4*
C2H2F4 tetrafluoroethane 4*
C3F8 octafluoropropane 4*
SF6 sulfur hexafluoride 4*
BF3 boron trifluoride 4*
CF3Br bromotrifluoromethane 3*

NH3 ammonia 4*
N(CH3)3 TMA 3*
SiH4 silane 4*
GeH4 germane 3*
CCl4 carbon tetrachloride 4*

Table B.1. Gases available in Magboltz 11.19.

C. Solids

The constructors of the Solid classes usually come in two versions: one where the solid is kept
in its default orientation (i.e. the local frame of the solid and the global frame are identical
except for a translation), and one where the solid’s orientation is set explicitly. This is done by
specifying the direction of the solid’s local 𝑧 axis in the global frame.

C.1. Box

SolidBox describes a rectangular cuboid (Fig. C.1). The simplest version of the constructor
creates a box the edges of which are aligned with the axes of the coordinate system.

SolidBox(const double cx, const double cy, const double cz,
const double lx, const double ly, const double lz);

cx,cy,cz Coordinates of the centre of gravity of the box.

lx,ly,lz Half-widths of the box along 𝑥, 𝑦, and 𝑧.

A box with a non-default orientation in space is created using

SolidBox(const double cx, const double cy, const double cz,
const double lx, const double ly, const double lz,
const double dx, const double dy, const double dz);

C.2. Tube

SolidTube describes a cylinder. The simplest constructor requires the location of the centre, the
(outer) radius and the half-length.

SolidTube(const double cx, const double cy, const double cz, const double r,
const double lz);

cx,cy,cz Coordinates of the centre of gravity of the cylinder.

r Outer radius of the cylinder.

lz Half-length of the cylinder.

By default, the central axis of the cylinder is collinear with the 𝑧-axis, as illustrated in Fig. C.2.
To create a cylinder with a different orientation, the constructor

SolidTube(const double cx, const double cy, const double cz, const double r,
const double lz, const double dx, const double dy, const double dz);

99

Appendix C. Solids 100

𝑥

𝑦

𝑧

𝑙𝑧

𝑙𝑧 𝑙𝑥
𝑙𝑥

𝑙𝑦
𝑙𝑦

Figure C.1. SolidBox centred at (0, 0, 0), defined by its half-widths 𝑙𝑥, 𝑙𝑦, 𝑙𝑧.

can be used.

When determining the surface panels (e.g. for use in neBEM), the cylinder is approximated as a
polygon with a finite number of panels. The type of polygon to be used can be set using

void SetSectors(const unsigned int n);

The number of corners of the polygon equals 4(𝑛 − 1). Thus, 𝑛 = 2 will produce a square, 𝑛 = 3
an octagon. By default, the polygon used for approximating the cylinder is inscribed in a circle
of the specified radius. If the “average-radius” flag is activated using

void SetAverageRadius(const bool average);

the radius will be interpreted as the mean radius of the polygon that approximates the cylinder.
By default, the list of surface panels will include the “lids” at ±𝑧. This can be switched off using
the functions

void SetTopLid(const bool closed);
void SetBottomLid(const bool closed);

C.3. Sphere

SolidSphere has two constructors. The first one takes the location of the centre and the outer
radius of the sphere.

SolidSphere(const double cx, const double cy, const double cz,
const double r);

cx,cy,cz Coordinates of the centre of the sphere.

101 Appendix C. Solids

𝑟

𝑙𝑧

𝑙𝑧𝑥

𝑦

𝑧

Figure C.2. SolidTube centred at (0, 0, 0).

r Radius of the sphere.

The second one takes the coordinates of the centre and the inner and outer radii.

SolidSphere(const double cx, const double cy, const double cz,
const double rmin, const double rmax);

When calculating surface panels (e.g. for use in neBEM), the sphere is approximated by a set of
parallelograms. The parameter 𝑛, set using

void SetMeridians(const unsigned int n);

specifies the number of meridians and also the number of parallels.

C.4. Hole

SolidHole describes an, optionally tapered, cylindrical hole in a box. Mandatory parameters are
the location of the centre, the radii and the dimensions of the box (see Fig. C.4 for an illustration
of the parameters).

SolidHole(const double cx, const double cy, const double cz,
const double rup, const double rlow,
const double lx, const double ly, const double lz);

cx,cy,cz Location of the point that is on the central axis of the hole, half-way between the two
planes of the box perpendicular to the central axis of the hole.

rup,rlow Radius of the hole as measured at the “upper” and at the “lower” surface of the box.

lx,ly,lz Half-lenghts of the box.

Appendix C. Solids 102

𝑥

𝑦

𝑧

𝑟

Figure C.3. SolidSphere centred at (0, 0, 0).

The central axis of the hole is collinear with the 𝑧-axis. To create a hole with a non-default
orientation, the constructor

SolidHole(const double cx, const double cy, const double cz,
const double rup, const double rlow,
const double lx, const double ly, const double lz,
const double dx, const double dy, const double dz);

is available.

Like in SolidTube, the type of polygon used for approximating the hole when calculating the
surface panels can be specified using

void SetSectors(const unsigned int n);

C.5. Ridge

SolidRidge describes a ridge, similar to a Toblerone bar. The constructor takes the location of
the centre and size of the floor, and the position of the ridge proper.

SolidRidge(const double cx, const double cy, const double cz,
const double lx, const double ly, const double hz,
const double hx);

cx,cy,cz Centre of the floor of the ridge in the (𝑥, 𝑦) plane at 𝑧 = 0.

lx,ly Half-lenghts of the floor.

hz Height of the ridge measured from the floor.

hx Offset in the 𝑥-direction of the ridge. If the offset is set to 0, then the ridge will be symmetric.

An illustration is given in Fig. C.5. By default, the ridge is taken to be parallel with the 𝑦-axis.

103 Appendix C. Solids

𝑟low

𝑟up

𝑥

𝑦

𝑧

Figure C.4. SolidHole centred at (0, 0, 0).

𝑥

𝑦

𝑧

ℎ𝑧

ℎ𝑥

𝑙𝑦

𝑙𝑦

𝑙𝑥𝑙𝑥

Figure C.5. SolidRidge in its default orientation, centred at (0, 0, 0).

Appendix C. Solids 104

𝑥
𝑦

𝑧

𝑙𝑧

𝑙𝑧

Figure C.6. SolidExtrusion in its default orientation.

C.6. Extrusion

SolidExtrusion (illustrated in Fig. C.6) describes a volume generated by extruding a polygon
along its normal axis (default: 𝑧-axis). The constructor takes the half-length along 𝑧, and the
𝑥, 𝑦 coordinates of the polygon defining the extrusion.

SolidExtrusion(const double lz,
const std::vector<double>& xp, const std::vector<double>& yp);

lz Half-length of the extrusion along 𝑧.

xp,yp 𝑥, 𝑦 coordinates of the point defining the extrusion profile.

To create an extrusion with an orientation or offset different from the default one, the construc-
tor

SolidExtrusion(const double lz,
const std::vector<double>& xp, const std::vector<double>& yp,
const double cx, const double cy, const double cz,
const double dx, const double dy, const double dz);

can be used.

Bibliography

[1] G. D. Alkhazov. “Statistics of electron avalanches and ultimate resolution of proportional
counters”. In: Nucl. Instr. Meth. 89 (1970), pp. 155–165.

[2] ANSYS. http://www.ansys.com.
[3] Atomic and Molecular Data for Radiotherapy and Radiation Research. IAEA TECDOC

799. IAEA, 1995.
[4] Average energy required to produce an ion pair. ICRU Report 31. Washington, DC: Inter-

national Commission on Radiation Units and Measurements, 1979.
[5] J. J. Barnes, R. J. Lomax, and G. I. Haddad. “Finite-element simulation of GaAs MESFETs

with lateral doping profiles and submicron gates”. In: IEEE Transactions on Electron Devices
23 (1976), pp. 1042–1048. doi: 10.1109/T-ED.1976.18533.

[6] S. F. Biagi. “Magboltz 11”. http://magboltz.web.cern.ch/magboltz.
[7] S. F. Biagi. “Monte Carlo simulation of electron drift and diffusion in counting gases

under the influence of electric and magnetic fields”. In: Nucl. Instr. Meth. A 421 (1999),
pp. 234–240.

[8] W. Blum, W. Riegler, and L. Rolandi. Particle Detection with Drift Chambers. Springer,
2008.

[9] R. Brun, F. Rademakers, et al. ROOT: An Object-Oriented Data Analysis Framework.
http://root.cern.ch.

[10] C. Canali et al. “Electron and Hole Drift VelocityMeasurements in Silicon and Their
Empirical Relation to Electric Field and Temperature”. In: IEEE Trans. Electron Devices
22 (1975), pp. 1045–1047.

[11] COMSOL Multiphysics. https://www.comsol.com.
[12] H. W. Ellis et al. “Transport properties of gaseous ions over a wide energy range”. In: At.

Data Nucl. Data Tables 17 (1976), pp. 177–210.
[13] H. W. Ellis et al. “Transport properties of gaseous ions over a wide energy range. Part II”.

In: At. Data Nucl. Data Tables 22 (1978), pp. 179–217.
[14] H. W. Ellis et al. “Transport properties of gaseous ions over a wide energy range. Part III”.

In: At. Data Nucl. Data Tables 31 (1984), pp. 113–151.
[15] Elmer. https://www.csc.fi/web/elmer.
[16] Gmsh – A three-dimensional finite element mesh generator with built-in pre- and post-

processing facilities. http://gmsh.info.
[17] W. N. Grant. “Electron and Hole Ionization Rates in Epitaxial Silicon at High Fields”. In:

Solid State Electronics 16 (1973), pp. 1189–1203.
[18] I. Krajcar Bronić. “On a relation between the W value and the Fano factor”. In: J. Phys.

B 25 (1992), p. L215. doi: 10.1088/0953-4075/25/8/004.
[19] C. Lombardi et al. “A Physically Based Mobility Model for Numerical Simulation of

Nonplanar Devices”. In: IEEE Trans. CAD 7 (1988), pp. 1164–1171.

105

http://www.ansys.com
http://www-nds.iaea.org/reports-new/tecdocs/iaea-tecdoc-0799.pdf
http://www-nds.iaea.org/reports-new/tecdocs/iaea-tecdoc-0799.pdf
https://doi.org/10.1109/T-ED.1976.18533
http://magboltz.web.cern.ch/magboltz
http://root.cern.ch
https://www.comsol.com
http://dx.doi.org/10.1016/0092-640X(76)90001-2
http://dx.doi.org/10.1016/0092-640X(76)90001-2
http://dx.doi.org/10.1016/0092-640X(78)90014-1
http://dx.doi.org/10.1016/0092-640X(84)90018-4
https://www.csc.fi/web/elmer
http://gmsh.info
https://doi.org/10.1088/0953-4075/25/8/004

Bibliography 106

[20] N. Majumdar and S. Mukhopadhyay. “Simulation of 3D electrostatic configuration in
gaseous detectors”. In: JINST 2.9 (2007).

[21] N. Majumdar and S. Mukhopadhyay. “Simulation of three-dimensional electrostatic field
configuration in wire chambers: a novel approach”. In: Nucl. Instr. Meth. A 566 (2006).

[22] G. Masetti, M. Severi, and S. Solmi. “Modeling of Carrier Mobility Against Carrier
Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon”. In: IEEE Trans.
Electron Devices 30 (1983), pp. 764–769.

[23] D. J. Massey, J. P. R. David, and G. J. Rees. “Temperature Dependence of Impact Ionization
in Submicrometer Silicon Devices”. In: IEEE Transactions on Electron Devices 53 (2006),
pp. 2328–2334. doi: 10.1109/TED.2006.881010.

[24] S. Mukhopadhyay and N. Majumdar. “A study of three-dimensional edge and corner
problems using the neBEM solver”. In: Engineering Analysis with Boundary Elements 33
(2009).

[25] S. Mukhopadhyay and N. Majumdar. “Computation of 3D MEMS electrostatics using a
nearly exact BEM solver”. In: Engineering Analysis with Boundary Elements 30 (2006).

[26] Y. Okuto and C. R. Crowell. “Threshold Energy Effect on Avalanche Breakdown Voltage
in Semiconductor Junctions”. In: Solid State Electronics 18 (1975), pp. 161–168.

[27] M. A. Omar and L. Reggiani. “Drift and diffusion of charge carriers in silicon and their
empirical relation to the electric field”. In: Solid State Electronics 30 (1987), pp. 693–697.

[28] R. van Overstraeten and H. de Man. “Measurement of the Ionization Rates in Diffused
Silicon p-n Junctions”. In: Solid State Electronics 13 (1970), pp. 583–608.

[29] A. Pansky, A. Breskin, and R. Chechik. “Fano factor and the mean energy per ion
pair in counting gases, at low x-ray energies”. In: J. Appl. Phys. 82 (1997), p. 871. doi:
10.1063/1.365787.

[30] M. Pomorski. “Electronic Properties of Single Crystal CVD Diamond and Its Suitability for
Particle Detection in Hadron Physics Experiments”. PhD thesis. Johann Wolfgang Goethe
University, Frankfurt am Main, 2008.

[31] R. Quay et al. “A Temperature Dependent Model for the Saturation Velocity in Semicon-
ductor Materials”. In: Materials Science in Semiconductor Processing 3 (2000), pp. 149–
155.

[32] S. Ramo. “Currents Induced by Electron Motion”. In: Proceedings of the I.R.E. 27 (1939),
pp. 584–585.

[33] G. F. Reinking, L. G. Christophorou, and S. R. Hunter. “Studies of total ionization in
gases/mixtures of interest to pulsed power applications”. In: J. Appl. Phys. 60 (1986),
p. 499. doi: 10.1063/1.337792.

[34] W. Riegler and G. Aglieri Rinella. “Point charge potential and weighting field of a pixel or
pad in a plane condenser”. In: Nucl. Instr. Meth. A 767 (2014), pp. 267–270.

[35] A. Rotondi and P. Montagna. “Fast calculation of Vavilov distribution”. In: Nucl. Instr.
Meth. B 47 (1990), p. 215. doi: 10.1016/0168-583X(90)90749-K.

[36] O. Sahin. “Excitation energy transfer model for Ne-CO2 and Ne-N2 mixtures”. In: JINST
16 (2021), P03026.

[37] O. Sahin and T. Z. Kowalski. “A comprehensive model of Penning energy transfers in Ar -
CO2 mixtures”. In: JINST 12 (2017), p. C01035.

[38] O. Sahin and T. Z. Kowalski. “Measurements and calculations of gas gain in Xe-5% TMA
mixture-pressure scaling”. In: JINST 13 (2018), P10032.

https://doi.org/10.1109/TED.2006.881010
https://doi.org/10.1063/1.365787
https://doi.org/10.1063/1.337792
https://doi.org/10.1016/0168-583X(90)90749-K

107 Bibliography

[39] O. Sahin et al. “Penning transfer in argon-based gas mixtures”. In: JINST 5 (2010), P05002.

[40] F. Sauli. “The gas electron multiplier (GEM): Operating principles and applications”. In:
Nucl. Instr. Meth. A 805 (2016), pp. 2–24.

[41] S. Selberherr et al. “The Evolution of the MINIMOS Mobility Model”. In: Solid State
Electronics 33 (1990), pp. 1425–1436.

[42] W. Shockley. “Currents to Conductors Induced by a Moving Point Charge”. In: J. Appl.
Phys. 9 (1938), pp. 635–636.

[43] H. R. Skullerud. “The stochastic computer simulation of ion motion in a gas subjected to
a constant electric field”. In: Brit. J. Appl. Phys. 1 (series 2) (1968), pp. 1567–1577.

[44] I. B. Smirnov. “Modeling of ionization produced by fast charged particles in gases”. In:
Nucl. Instr. Meth. A 554 (2005), pp. 474–493.

[45] D. Srdoc, B. Obelic, and I. Krajcar Bronić. “Statistical fluctuations in the ionisation yield
of low-energy photons absorbed in polyatomic gases”. In: J. Phys. B 20 (1987), p. 4473.
doi: 10.1088/0022-3700/20/17/025.

[46] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, 1993.

[47] Synopsys Sentaurus Device. http://www.synopsys.com/products/tcad/tcad.html.

[48] R. Veenhof. Garfield - simulation of gaseous detectors. http:://cern.ch/garfield.

[49] L. Viehland and E. A. Mason. “Transport properties of gaseous ions over a wide energy
range, IV”. In: At. Data Nucl. Data Tables 60 (1995), pp. 37–95.

[50] J. F. Ziegler, J. Biersack, and U. Littmark. The Stopping and Range of Ions in Matter.
Pergamon Press, 1985.

https://doi.org/10.1088/0022-3700/20/17/025
http://www.synopsys.com/products/tcad/tcad.html
http:://cern.ch/garfield
http://dx.doi.org/10.1006/adnd.1995.1004

	Introduction
	Getting started
	Prerequisites
	Downloading the source code
	Building the project
	Building an application
	Python
	Examples
	Drift tube
	GEM
	Silicon sensor

	Media
	Transport parameters
	Transport parameter tables
	Visualization

	Gases
	W values and Fano factors
	Ion transport
	Magboltz

	Semiconductors
	Silicon
	Gallium arsenide
	Diamond

	Components
	Defining the geometry
	Visualizing the geometry

	Field maps
	Ansys
	Synopsys TCAD
	Elmer
	CST
	COMSOL
	Regular grids
	Visualizing the mesh

	Analytic fields
	Describing the cell
	Cylindrical geometries
	Periodicities
	Cell types
	Dipole moments
	Weighting fields
	Wire displacements
	Optimisation

	neBEM
	Weighting fields

	Parameterisations
	Other components
	Visualizing the field
	One-dimensional plots
	Two-dimensional plots
	Field lines

	Inspecting the field
	Sensor

	Tracks
	Heed
	Delta electron transport
	Photon transport
	Magnetic fields

	SRIM
	TRIM
	Degrade

	Charge transport
	Runge-Kutta-Fehlberg integration
	Monte Carlo integration
	Microscopic tracking
	Visualizing drift lines
	Visualizing isochrons

	Signals
	Readout electronics
	Noise

	Delayed signals

	Units and constants
	Gases
	Solids
	Box
	Tube
	Sphere
	Hole
	Ridge
	Extrusion

	Bibliography

