
Chapter 1

Electrostatics

The computation of the electrostatic field and potential is a two-step process:

1. the calculation of charges (per unit length) on the wires and of a reference potential repro-
ducing the wire-potentials at the wire-surfaces in step 2. Various boundary conditions may
have to be satisfied. The equations solved in this step are known as capacitance equations.

2. the summation of the contributions of each wire to the field and potential at any given
position, using the charges calculated step 1.

Both steps require an expression for the electrostatic potential, which will be derived for the
various situations in the first part of this chapter. It will also be shown in this chapter that most
cylindrical geometries can be reduced to Cartesian geometries by applying suitable coordinate
transformations.

1.1 Notation
We will use the following notation in this chapter:

• n: number of wires,

• zj = (xj , yj): position of wire j,

• rj: radius of wire j,

• qj : charge of wire j,

• Vj: surface potential of wire j,

• X1, X2: positions of the planes at constant x,

• Y1, Y2: positions of the planes at constant y,

• W (z) = W (x, y): complex potential at z or at (x, y),
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Planes Not periodic x-periodic y-periodic doubly periodic
none A B1x B1y C1
1 x A mirror B2x B1y mirror C2y
2 x B2x B2x C2y C2y
1 y A mirror B1x mirror B2y C2x
1 x, 1 y A mirror B2x mirror B2y mirror C3
2 x, 1 y B2x mirror B2x mirror C3 C3
2 y B2y C2x B2y C2x
1 x, 2 y B2y mirror C3 B2y mirror C3
2 x, 2 y C3 C3 C3 C3

Table 1.1: Table of the cell types

• φ(z) = V (z) = ReW (z): potential at z induced by a unit charge at the origin,

• sx, sy: x and y periodicities.

1.2 Cell types
Garfield should be able to handle all rectangular and some cylindrical 2-dimensional cells not
involving more than 2 equipotential planes in either the x (r)- or the y (φ)-direction. Repetition
of the cell in the x (r)- and/or the y-direction is allowed. Table 1.2 shows the names used in the
program for each of the potentials; the mention ’mirror’ means that mirror charges are introduced
in the field calculations.

The positions of the charges and their mirror images for each of the potentials is shown in
Fig 1.2. As can be seen from the plot, the A potentials are for single charges, the B potentials for
rows and the C potentials for grids of charges.

No distinction will be made between the physical charges and the (mathematical) mirror
charges in the rest of this chapter unless otherwise stated.

1.3 Isolated charges (type A)
The potential for a line charge at the origin is:

φ(x, y) = φ0 +
1

2πϵ0
log(

√
x2 + y2/r0)

where φ0 is the potential at a distance r0 from the origin. Usually, r0 is chosen to be the radius
of the wire in which case φ0 equals the surface potential.

1.4 Rows of charges (types B1x, B1y, B2x and B2y)
We will use the following scheme to find these potentials:
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Figure 1.1: Schematic arrangement of the charges

3



1. Determine a complex entire function F +(z) satisfying the following requirements:

(a) F+(z) has simple zeros at the positions of the wires and their even images,
(b) the coefficient of z in the expansion of F +(z) around z = 0 equals 1, as required by

the Maxwell equations.

2. Determine a similar function F −(z) for the odd images. Set F−(z) = 1 if these do not
exist.

3. Define the function F (z):

F (z) = F+(z)/F−(z)

4. Then, a potential solving our problem is:

φ(x, y) =
−1

2πϵ0
Re log F (z)

and after some algebra the corresponding electric field turns out to be:

Ex − iEy =
1

2πϵ0

F ′(z)

F (z)

We will first of all deal with type B1x. The obvious choice for an F which has a zero at each of
the replicas of the wire is the following:

FB1x(z) = (z − z0)
∞∏

n=1

(
1 − z − z0

nsx

)(
1 +

z − z0

nsx

)

Using the sine-product, see for instance [5]:

sin(z) = z
∞∏

n=1

1 −
( z

nπ

)2

the following simple expression follows:

FB1x(z) = sin

(
π

z − z0

sx

)

The hyperbolic analog of the sine-product:

sinh(z) = z
∞∏

n=1

1 +
( z

nπ

)2

leads to the B1y potential:

FB1y(z) = sinh

(
π

z − z0

sx

)
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The B2x and B2y potentials are mere superpositions of the B1x and B1y potentials:

FB2x =
sin
(
π z−z0

2(X2−X1)

)

sin
(
π z−z′0

2(X2−X1)

)

where z′0 = 2(X2 − X1) + iy

FB2y =
sinh

(
π z−z0

2(X2−X1)

)

sinh
(
π z−z′0

2(X2−X1)

)

where z′0 = x + 2i(Y2 − Y1)

1.5 Electrostatic field of a doubly periodic wire array
(Contributed by G. A. Erskine)

1.5.1 Specification of the array
We consider a doubly periodic array of thin wires, the array consisting of replicas of a basic
rectangular cell defined by 0 ≤ x ≤ sx, 0 ≤ y ≤ sy. This cell contains n wires, where wire j is
characterised by:

Position . . . zj = xj + iyj,
Radius . . . rj,
Potential . . . Vj.

Wires identical to wire j (j = 1, 2, · · · , n) are situated at:

zj + λsx + iµsy (λ, µ = 0,±1,±2, · · · ).

1.5.2 The thin-wire potential approximation
We shall obtain a potential function V (z) which satisfies the following conditions:

∂2V (z)

∂x2
+

∂2V (z)

∂y2
= 0, z ̸= zj , j = ±1,±2, · · · ,±n. (1.1)

V (zk + rke
iφ) = Vk + ≀(rk), 0 ≤ φ ≤ 2π, k = 1, 2, · · · , n. (1.2)

V (z + sx) = V (z), for all z. (1.3)
V (z + isy) = V (z), for all z. (1.4)
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The exact potential function would be defined by the same conditions without any term ≀(rk)
on the right-hand side of (1.2). To simplify the formulae, electrostatic units are used.

We define V (z) = Re W (z) where

W (z) =
n∑

j=1

qj

{
−2 log ϑ1

[
π

sx
(z − zj), e

−πsy/sx

]
+ i

4π

sxsy
yjz

}
+ c (1.5)

with the theta function ϑ1 [8] defined by

ϑ1(ζ , p) = 2p1/4
∞∑

m=0

−1mpm(m+1) sin(2m + 1)ζ , (1.6)

and with the n+1 real constants qj (j = 1, 2, · · · , n) and c determined by the system of equations

n∑

j=1

{
−2 log

∣∣∣∣ϑ1

[
π

sx
(zi − zj), e

−πsy/sx

]∣∣∣∣−
4πyiyj

sxsy

}
qj + c = Vi, (i = 1, 2, · · · , n), (1.7)

n∑

j=1

qj = 0. (1.8)

In (1.7) we use the convention that, for the terms with i = j,

ϑ1

[
π

sx
(zi − zj), p

]
=

πri

sx
ϑ′

1(0, p) (1.9)

=
πri

sx
2p1/4

∞∑

m=0

(−1)m(2m + 1)pm(m+1) (1.10)

The coefficient qj in (1.5) is the charge per unit length on wire j.
Condition (1.1) is satisfied because V (z) is the real part of a function (1.5) which is analytic

everywhere except at the points zj (j = 1, 2, · · · , n). Condition (1.2) follows from (1.7) and
(1.9). Condition (1.3) is an immediate consequence of (1.5) and (1.6).

To show that condition (1.4) is satisfied, define

wj(z) = −2 log ϑ1

[
π

sx
(z − zj), e

−πsy/sx

]
+ i

4π

sxsy
yjz.

Then, from the quasi-periodicity of the function ϑ1 [9], neglecting integral multiples of 2πi,

wj(z + isy) = wj(z) + i4π
z − xj

sx
− 2π

sy

sx
,

and hence

Rewj(z + isy) = Re wj(z) − 2π

sx
(2y + sy)
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Therefore, using (1.8),

Re W (z + isy) = Re
n∑

j=1

qjwj(z + isy) + c (1.11)

= Re
n∑

j=1

qjwj(z) + c (1.12)

= Re W (z). (1.13)

1.5.3 Alternative expression for the thin-wire potential
By considering the array obtained by rotating the original array through 90◦;, we see that the
real part of the function obtained from W (z) by replacing z by iz, zj by izj (j = 1, 2, · · · , n),
and interchanging sx and sy, also satisfies the conditions (1.1) through (1.4). We thus obtain the
alternative expression:

W (z) =
n∑

j=1

qj

{
−2 log ϑ1

[
iπ

sy
(z − zj), e

−πsx/sy

]
− 4π

sxsy
xjz

}
+ c, (1.14)

where qj (j = 1, 2, · · · , n) and c are determined by
n∑

j=1

{
−2 log

∣∣∣∣ϑ1

[
iπ

sy
(zi − zj), e

−πsx/sy

]∣∣∣∣−
4πxixj

sxsy

}
qj + c = Vi, (i = 1, 2, · · · , n), (1.15)

n∑

j=1

qj = 0. (1.16)

The parameter p in the series (1.6) has the value e−πsy/sx when the expression (1.5) is used for
W (z), and the value e−πsx/sy when expression (1.14) is used. We therefore adopt the following
rule:

• If sx ≤ sy, computeW (z) from (1.5).

• If sx > sy, computeW (z) from (1.14).

This rule ensures that, for all values of sx and sy, we have p ≤ e−π = 0.043....

1.5.4 Field intensity
The components (Ex, Ey) of the electrostatic field intensity vector at z are given by:

Ex = −∂V

∂x
= −Re W ′(z), (1.17)

Ey = −∂V

∂y
= +Im W ′(z), (1.18)
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Figure 1.2: Periodic wire array between grounded parallel planes

where, depending upon whether we use (1.5) or (1.14) forW (z),

W ′(z) =
n∑

j=1

qj

{
−2π

sx

ϑ′
1[

π
sx

(z − zj), e−πsy/sx ]

ϑ1[
π
sx

(z − zj), e−πsy/sx ]
+ i

4π

sxsy
yj

}

or

W ′(z) =
n∑

j=1

qj

{

−i
2π

sy

ϑ′
1[

iπ
sy

(z − zj), e−πsx/sy ]

ϑ1[
iπ
sy

(z − zj), e−πsx/sy ]
− 4π

sxsy
xj

}

.

1.5.5 Periodic wire array between parallel electrodes
The complex potential of an array of wires which is periodic in the direction of one of the axes,
and is bounded by two parallel zero-potential planes, is identical (in the region between the
planes) to that of a doubly periodic array whose basic cell contains the original wires together
with their reflections (with reversed sign for the wire potential) in one of the planes. If the planes
are not at zero potential it is merely necessary to add a term linear in z.

Consider an array consisting of replicas in the x-direction of a group of n wires lying between
zero-potential planes situated at y = Y1 and y = Y2. Let the wire positions be zj and the wire
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potentials Vj (j = 1, 2, · · · , n), and let the x-periodicity be sx. If z is the complex conjugate of
z, the reflection z′j of zj in the plane y = Y1 is given by

z′j = zj + i2Y1.

We now define a y-periodicity

sy = 2(Y2 − Y1),

and consider the doubly periodic array with periods (sx, sy) consisting of replicas of a basic cell
(enclosed by the broken line in Fig 1.5.5) containing 2n wires:

Position zj z′j
Potential Vj −Vj

Charge qj −qj

From the symmetry of the positive and negative charges with respect to each of the planes y = Y1

and y = Y2 (Fig 1.5.5) it follows that these planes are at zero potential, and hence that the field
of the doubly periodic array is the same as that of the original array. Using (1.5) and (1.14)
respectively, we obtain the following expressions for the complex potential:

Case 1. sx ≤ 2(Y2 − Y1).

W (z) =
n∑

j=1

qj

{
wa(z − zj) − wa(z − z′j) + i

8π

sxsy
(yj − Y1)z

}
, (1.19)

where

wa(z) = −2 log ϑ1

[
πz

sx
, e−πsy/sx

]
. (1.20)

Case 2. sx > 2(Y2 − Y1).

W (z) =
n∑

j=1

qj

{
wb(z − zj) − wb(z − z′j)

}
, (1.21)

where

wb(z) = −2 log ϑ1

[
iπz

sy
, e−πsx/sy

]
. (1.22)

In both cases the qj are determined by the system of linear equations

n∑

j=1

Re W (zi)qj = Vi, (i = 1, 2, · · · , n), (1.23)

where the convention defined by (1.9) is used for the terms with i = j.
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Figure 1.3: Wire array in a grounded rectangular tube

Note that the sum
∑

(qj + q′j) of the 2n charges in the unit cell of the doubly periodic array
is equal to zero, but that the sum

∑
qj of the n physical charges is not necessarily equal to zero.

If, instead of being at zero potential, the planes y = Y1 and y = Y2 are at potentials v1

and v2 respectively, it is necessary to add to the complex potential W(z) a term representing the
superimposed uniform field, namely

(Y2v1 − Y1v2) + i(v1 − v2)z

Y2 − Y1
.

[Expressions equivalent to (1.19) through (1.22) were obtained by Buchholz [1] by direct
summation of the contributions of the individual wires and of their multiple reflections in the
planes.]

1.5.6 Wire array inside a rectangular tube
We consider n wires with positions zj and potentials Vj , (j = 1, 2, · · · , n) lying inside a rect-
angular zero-potential tube defined by X1 ≤ x ≤ X2, Y1 ≤ y ≤ Y2. The complex potential
inside the tube is the same as that of a two-dimensional periodic array of image charges having

10



the symmetry shown in Fig 1.5.6. The periods of this two-dimensional array are

sx = 2(X2 − X1), (1.24)
sy = 2(Y2 − Y1), (1.25)

and the basic cell (enclosed by the broken line in Fig 1.5.6) contains 4n wires:

Position Potential Charge Description

z(0)
j = zj Vj qj Physical wire

z(1)
j = zj + i2Y1 −Vj −qj Reflection in the line y = Y1

z(2)
j = −zj + 2(X1 + iY1) Vj qj Reflection in the pointX1 + iY1

z(3)
j = −zj + 2X1 −Vj −qj Reflection in the line x = X1

On defining, in terms of (1.20) and (1.22),

W (z) = wa(z) ifX2 − X1 ≤ Y2 − Y1, (1.26)
W (z) = wb(z) ifX2 − X1 > Y2 − Y1, (1.27)

we obtain the required complex potential:

W (z) =
n∑

j=1

qj

{
W (z − z(0)

j ) − W (z − z(1)
j ) + W (z − z(2)

j ) − W (z − z(3)
j )
}

, (1.28)

where the qj are determined by a system of linear equations (1.23) in which W (z) is computed
from (1.28).

1.5.7 Computational considerations
Because the expressions for W (z) either assume the relation

∑
qj = 0 or depend only on the

ratio of two ϑ1 functions, the constant 2p1/4 in (1.6) makes no contribution. The series which
need to be evaluated numerically are therefore of the form

∞∑

m=0

(−1)mpm(m+1) sin(2m + 1)ζ [forW andW ′], (1.29)

∞∑

m=0

(−1)m(2m + 1)pm(m+1) cos(2m + 1)ζ [forW ′ only], (1.30)

where

p = e−πsy/sx, ζ = π
sx

(z − zj) when sx ≤ sy, (1.31)
p = e−πsx/sy , ζ = iπ

sy
(z − zj) when sx > sy. (1.32)
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If terms with m ≥ M are neglected when evaluating (1.29), the relative error in the sum is
bounded approximately by

ρM = pM(M+1)left|sin(2M + 1)ζ

sin ζ
right| (1.33)

≤ (2M + 1)pM(M+1)e2M |Im ζ|. (1.34)

Assuming, as we may without loss of generality, that |x − xj | ≤ sx and |y − yj| ≤ sy, we
find for both (1.5) and (1.14) that e|Im ζ| ≤ 1/p. Hence,

ρM ≤ (2M + 1)pM(M−1) (1.35)
≤ (2M + 1)e−πM(M−1). (1.36)

In the same way, we may show that the relative error resulting from the neglect of terms with
m ≥ M in the evaluation of (1.30) is bounded approximately by σM = (2M + 1)ρM . Setting
M = 3, and using p ≤ e−π,

ρ3 ≤ 4.6 × 10−8, (1.37)
σ3 ≤ 3.2 × 10−7. (1.38)

Therefore, for practical computation, the expressions to be evaluated are:

sin ζ − p2 sin 3ζ + p6 sin 5ζ [ forW andW ′ ]
cos ζ − 3p2 cos 3ζ + 5p6 cos 5ζ [ forW ′ only ]

To reduce the number of evaluations of sines and cosines of complex argument, we make use of
the summation algorithm [2], which in the present case takes the following form:

1. To evaluate Sn =
∑n

m=0 am sin(2m + 1)ζ :

s = sin ζ (1.39)
α = 2 − 4s2 [= 2 cos 2ζ ] (1.40)
un = an (1.41)
un−1 = an−1 + αan (1.42)
for j = n − 2 (−1) 0 do uj = aj + αuj+1 − uj+2 (1.43)
Sn = (u0 + u1)s (1.44)

2. To evaluate Cn =
∑n

m=0 bm cos(2m + 1)ζ :

c = cos ζ (1.45)
α = 4c2 − 2 [= 2 cos 2ζ ] (1.46)
un = bn (1.47)
un−1 = bn−1 + αbn (1.48)
for j = n − 2 (−1) 0 do uj = bj + αuj+1 − uj+2 (1.49)
Cn = (u0 − u1)c (1.50)
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1.6 Thin wire in a circular tube (type D1)
By conformally mapping the circle |z| = R representing a zero-potential cylinder onto the unit
circle with the point z0 representing a thin wire being mapped onto the origin, and then using a
type A potential,

W (z) = − q

2πϵ0
log

(z − z0)/R

1 − zz0/R2

1.7 Ring of thin wires in a circular tube (type D2)
For a ring of n wires situated at z0eiν2π/n, ν = 0, 1, · · · , n − 1 inside the cylinder |z| = R,

W (z) = − q

2πϵ0
log

(zn − zn
0 )/Rn

1 − (zz0/R2)n

provided z0 ̸= 0, otherwise the D1 potential is used. The presence of two different potentials
functions in the same cell makes that the capacitance matrix can be asymmetric.

1.8 Charges inside a polygon (type D3)
The potentials for wires inside a polygon are calculated by mapping the polygon onto the unit
circle and then applying the potentials for wires inside a round tube (type D1). The mapping
algorithm is described in the following paragraph.

1.9 Mapping a regular polygon onto the unit circle
(Contributed by G. A. Erskine)

From [4],

z =
a

κ

∫ w

0

du

(1 − un)2/n
, (1.51)

where

κ =

∫ 1

0

du

(1 − un)2/n
(1.52)

=
Γ(1 + 1/n)Γ(1 − 2/n)

Γ(1 − 1/n)
. (1.53)

On solving (1.51) by series reversion, we obtain

W (z) =
∞∑

j=0

cj

(κz

a

)jn+1

(1.54)
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Figure 1.4: Mapping from the regular polygon with vertices at aeiν2π/n onto the unit circle.

To obtain an expression which can be used in the neighbourhood of z = a we set u = 1 − v
in (1.51), which yields

κ
(
1 − z

a

)
=

∫ 1−w

0

dv

[1 − (1 − v)n]2/n
, (1.55)

and hence, by reversion,

W (z) = 1 −
∞∑

j=0

c′j [κ(1 − z/a)](j+1) n
n+2 . (1.56)

1.10 The capacitance equations, boundary conditions
The equations to be solved to find the wire charges are known as capacitance equations, they are
obtained by expressing the (known) potential of wire i in the (unknown) charges per unit length
qj on the wires j = 1 · · ·n.

The equipotential planes can be treated as if they were grounded if the linear potential Vplanes

generated by the planes alone is subtracted from all wire-potentials before the charges are calcu-
lated and added separately when the potential and electrostatic field are evaluated. The equipo-
tential planes are assumed to be grounded in the rest of this chapter.

Explicit charge calculations for equipotential planes may be avoided if (multiple) mirror
charges are introduced. See Fig 1.2 for their positions (⊙ = original wire and even mirror images,
× = odd image).

The sum of all charges should always be zero (the energy of the electric field would be
infinite). If there is at least one equipotential plane, the sum of all charges is automatically zero:
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the charges and mirror charges cancel. The reference potential is set equal to zero in this case.
The freedom to choose a reference potential can be exploited when planes are absent. To find the
charges, we therefore have to solve the following equations:

Vi =
nwires∑

j=1

C−1
ij qj + Vplanes(z) + Vreference (1.57)

∑

wires + mirror wires

qj = 0 (1.58)

where qj are the charges to be found, and C−1 is the inverted capacitance matrix.
Making use of the expressions earlier on in this chapter, the elements of the capacitance

matrix can be written as:

C−1
ij =

{ −1
2πϵ0

Re log F (zi − zj) (i ̸= j)
−1

2πϵ0
Re log

(
di limz→0

F (z)
z

)
(i = j)

and where F is a complex entire function such that

Re log F (z) = φ(z)

Once the charges per unit length are known, the potential at z can be evaluated from the formula:

V (z) =
nwires∑

j=1

qjφ(z − zj) + Vplanes(z) + Vreference

1.11 Cylindrical geometry, internal coordinates
Cylindrical coordinates are convenient to describe chambers which contain planes that do not
cross at right angles or which have 2 concentric tubes. Such cells are handled by conformally
mapping the chamber to Cartesian coordinates and solving the fields using the recipes given
earlier in this chapter. The coordinate mapping used by Garfield reads [6]:

(x, y, z) = (eρ cos φ, eρ cos φ, ζ) (1.59)

which translates circles into lines at constant ρ and radial lines into lines at constant φ. Circular
and radial planes translate to planes at constant ρ and constant φ, while rotational symmetry
becomes a φ periodicity.

The following points should however be noted:

• The origin in natural coordinates has no counterpart in (ρ, φ, ζ) coordinates. As a result,
there should be no charges near the origin, and the field at the origin can not be computed.
Configurations in which this is a limitation, can usually be handled using the tube potentials
(Sections 1.6 and 1.7).
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• Since ρ is not linear in r, with r2 = x2 + y2, radially repetitive chambers can not be
processed with this mapping.

• Themapping introduces a cut between+π and−π. If the chamber does not have a declared
φ-periodicity, then a 2π periodicity in φ is automatically added.

The transformation properties of some common geometrical objects can be derived using the
transformation law (1.59):

scalars Scalars are, by definition, invariant.
Example: the electrostatic potential.

local vectors Local vectors behave like infinitesimal transformations, not like coordinates:
(

dx
dy

)
= eρ

(
cos φ − sin φ
sin φ cos φ

)(
dρ
dφ

)

Example: the drift velocity.

co-vectors Co-vectors are derivatives of a scalar. They transform according to:
(

∂x

∂y

)
= e−ρ

(
cos φ − sin φ
sin φ cos φ

)(
∂ρ

∂φ

)

In polar coordinates, the transformation reads:

∂rφ = ∂ρφ/r

Example: the components of the electrostatic field.

axial vectors We will call A an axial vector if

∀V such thatV is a vector : V × A is a co-vector

With this definition, the transformation of an axial vector reads:
⎛

⎝
Ax

Ay

Az

⎞

⎠ = e2ρ

⎛

⎝
cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞

⎠

⎛

⎝
Aρ

Aφ

Aζ

⎞

⎠

Example: the magnetic field.

Using these transformation properties, it follows that:
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• The Laplace operator is the product of 2 gradients:

∇2
xy = e−2ρ∇2

ρφ

The ρ-dependent scaling factor on the right hand side makes that extending the (x, y)
coordinate system with a third coordinate that transforms as ζ = z, leads to a violation
of the Poisson equation under transformation. For simplicity, we will therefore limit the
electric field to have only x and y components.

• The equation of motion in the absence of a magnetic field has the form of a proportionality
between a vector and a co-vector:

vD = µ(E)E

where µ(E) is called the mobility. As a rule, the mobility depends on the electric field
strength and care has to be taken that the mobility is evaluated for the electric field strength
in natural coordinates. In order to be able to use the same equation of motion in (x, y, z)
and (ρ, φ, ζ), we define

µxyz = e2ρµρφζ

The above definition of the transformation property for the mobility is convenient also in
the presence of a magnetic field since |µB| transforms like a scalar. As a result, all terms
in the equation of motion in the presence of a magnetic field have the same transforma-
tion behaviour, and the same equation can therefore be used with or without conformal
mapping.

• Inner products of vectors and co-vectors are as usual scalars. The product of drift velocity,
a vector, and the weighting field, a co-vector, is therefore a scalar. Thus, signals can be
computed using the same equations whether using conformal mappings or not.

1.12 Zeros of the electric field
The points where E = 0 is satisfied are the natural counterparts of the singularities at the wire
positions and as such play a key role in the understanding of the behaviour of drifting particles in
the chamber. Wires (and their mirror images) are the end points of the drift-lines whereas zeros
are bifurcation points in the drift-field. It follows that the drift-lines from these points delimit
the various acceptance regions. It should be noted on the outset that limiting oneself to the no-B
case is not a true constraint since the drift velocity vector is zero wherever E is zero, no matter
the B field (see Section ??).
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1.12.1 The saddle shape of the zeros
E has a saddle point at its zeros owing to the harmonicity of the potential, as can be seen from a
Taylor-expansion around the zero:

(
Ex

Ey

)
= −

(
∂2V
∂x2

∂2V
∂x∂y

∂2V
∂y∂x

∂2V
∂y2

)(
δx
δy

)
+ · · ·

Assuming V satisfies the usual regularity conditions and using the harmonicity of V , one obtains
after rotating over an angle

tan φ =
∂2V

∂x2
/

∂2V

∂x∂y

a diagonal form:
(

Eu

Ev

)
= −

(
λ 0
0 −λ

)(
δu
δv

)
+ · · ·

where λ is some (in the interesting case) non-zero number. The above treatment is valid for first
order zeros, which are certainly the only ones one meets in practice; it would be interesting to
investigate the existence of higher order zeros though.

The saddle shape can easily be inferred from this formula. An immediate -and important-
consequence of this simple fact is that the argument of E (i.e. the angle of the E vector) changes
by−2pi over one full counter-clockwise loop around the saddle point. This is in marked contrast
to wires where the argument changes by +2pi.

1.12.2 The principle of the argument
The principle of the argument is a convenient tool for counting the number of zeros and singu-
larities (or poles) of a complex analytic function inside a given area. It simply states that for a
closed loop γ and an meromorphic function f which has simple zeros and simple poles none of
which lie on γ:

∆γArg f = 2π(number of zeros − number of poles)

This is not the most general phrasing of the theorem but it is adequate for our purposes (see
[7] for a proof). Recall that E (complex version) is not a meromorphic function but the com-
plex conjugate of one that is. One merely has to change the sign of the change in argument to
compensate for this. Hence, we find that:

∆γArg E = 2π(number of wires − number of zeros)

1.12.3 Locating zeros
The principle of the argument can directly be applied to obtain via bisection regions that contain
precisely one zero. The program uses a random search inside these areas to find good starting
points and then steps towards the zeros with a first (!) order stepping method that assumes a
saddle shape; higher order methods, no matter how sophisticated, are inevitably inefficient.
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