
Chapter 1

Energy loss

1.1 Introduction
In gas-based detectors, particle trajectories are measured using the ionisation electrons that are
generated by the particle. Garfield is currently interfaced with two programs that simulate the
ionisation process: Heed for high-energy charged particles and photons, and SRIM which caters
for low-energy ions.

1.2 Available models

1.2.1 Heed
The Heed program [Igor Smirnov, NIM A 554 (2005) 474] is designed to simulate the ionisation
patterns created by charge hadrons traversing a nearly arbitrary gas mixture. An underlying
assumption is that the hadrons lose only a small part of their energy in the process. Heed can also
process the absorption of low-energy ( ) photons. Heed is not designed to simulate
heavily ionising particles, such as ions, which stop in the gas.

The part of the program that computes the energy transfer from a charged particle to the gas
molecules is based on the PAI model. Heed goes much further than this model and has built-in
knowledge of the electron energy levels inside the gas molecules which it uses to generate (and
re-absorb) fluorescence photons from excited states. Heed also incorporates a detailed model for
the transformation of the energy transferred to the gas into spatial ionisation patterns, with the
appropriate fluctuations.

Heed has been tested extensively and is widely used by high-energy physics experiments.

1.2.2 SRIM
The SRIM program [www.srim.org] deals with ions which stop in a material. The output of
the program contains tables of the mean electromagnetic and hadronic differential energy loss,
the transverse and longitudinal straggling, and the range, all as function of the energy of the
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ion. Fig. 1.1 shows two examples of such data. SRIM unfortunately does not provide statistical
information other than these averages, and the distribution parameters have therefore to be taken
from other sources. These models are described in the remainder of this chapter.

A companion program, TRIM, does generate individual events. Sadly however, this program
does not seem to be available in source form for interfacing.

1.3 Mean energy loss
From the SRIM differential energy loss tables, one can compute the mean energy loss over a step
of any length by integrating

where is the energy of the ion at a point . This differential equation can be solved analyti-
cally in a number of simple cases, e.g. for a linear dependence of the differential energy loss on
the energy of the particle, in which case the energy of the particle will fall exponentially. Given
that the solution will in general be non-linear, caution needs to be exercised when integrating
the energy loss over steps of any length. Garfield uses a comparison of Runge-Kutta methods to
control the sub-step size.

1.4 Electromagnetic energy loss fluctuations

1.4.1 Introduction
A broad range of models to describe electromagnetic energy loss fluctuation, sometimes called
straggling, has been developed. Popular versions involve Landau, Vavilov, Gaussian and other
functions, as well as combinations of these. None of these models is particularly accurate, and it
is therefore not meaningful to argue about the subtleties of the shapes of these distributions, as
pointed out in the review by Hans Bichsel [Reviews of Modern Physics, Volume 60, July 1988,
p663-699].

1.4.2 Notation
In the following, we will give expressions for the distribution of the energy that is lost by a
particle with mass , kinetic energy , velocity

matching and charge , while traversing a layer of material of thickness , density , atomic
weight and atomic number . We write for the mean energy loss. The energy
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Figure 1.1: The differential energy loss and straggling as computed by SRIM for an ion in Ar
(top row) and a ion in Xe (bottom row). In the differential energy loss graphs, orange lines
represent total differential energy loss, purple lines the electromagnetic components and link
lines the hadronic component. In the straggling graphs, the orange lines show the total range,
the purple lines the longitudinal straggling and the pink lines the transverse straggling. ion
in Ar serves as an example in the rest of this chapter since it can be treated both by SRIM and
by Heed. Energy loss is almost entirely electromagnetic in this case, which is in marked contrast
with ion in Xe where hadronic energy loss dominates.
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loss term , which depends on the kinetic energy of the particle, needs to be provided
independently, e.g. by the SRIM program. An energy loss parameter is assumed to be given by

For the maximum energy which can be transferred in in any one collision, we use the expression

where is the electron mass. The ratio of and is one of the key parameters when
deciding which generator to use:

Bear in mind that is proportional to the step size .

1.4.3 Landau distribution
Applicability

The Landau distribution is designed to describe the energy loss in layers of material where the
mean energy loss is small compared to the largest energy which can be transferred in any single
collision. This typically applies when the absorbing layers are thin. In addition, for the Landau
approximation to be valid, the layer must be sufficiently thick for to be large compared with the
ionisation potential of the material that is traversed. In the example used here, gaseous argon, the
relevant ionisation potential is and the Landau approximation is accordingly expected to
be fail for .

Sampling parameter

When applying the Landau distribution, we do not sample at

as one might expect, but rather at

where . The reason for doing so is twofold: this ensures that the convolution
properties (Sect. 1.3.7) are satisfied and this provides continuity between the Landau, Vavilov
and Gaussian distributions.
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Undefined mean

A technical problem with the Landau distribution is that it doesn’t have a mean in the sense
that

as . This is a consequence of the slowly decaying high- tail of the Landau distribu-
tion, which in itself is normalised:

Not having a definite mean is not a problem as long as we are dealing with analytic expressions
for the energy loss distribution, but this leads to large and unphysical fluctuations when genera-
ting Monte Carlo events since occasionally energy losses will exceed the kinematic maximum.
In order to have a definite mean, the conventional solution consists in imposing such
that the mean of the truncated distribution has the desired value. The relation between and

can be approximated by

with coefficients computed by numeric integration. This approach hardly has a physics basis,
but given the overall accuracy we expect from this model, this should not be a point of major
concern.

When applying the Landau distribution, we truncate the Landau distribution such that the
mean has the value

which gives the mean of the desired value, .

Negative energy loss

By eliminating high energy loss fluctuations, we have ensured that the mean energy loss as
generated with the Landau distribution has the desired value. Unfortunately, as we will see below,
this correct value of the mean is obtained in part through negative energy loss values. Negative
energy losses are, of course, not physical and they must be avoided. Contrary to the situation at
high energies, truncation at zero energy is not an option since such a truncation grossly distorts
the distribution in a domain where it is deemed most accurate.

The Landau distribution decays exponentially towards negative : there is a
probability to find a and the distribution is numerically zero for , see Fig. 1.2.
Assuming we are willing to accept the risk of generating a negative energy loss, then we
have to require
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This condition is difficult to satisfy for thin layers, a priori the domain where one applies the
Landau distribution. We consider the Landau distribution for ( ) while
conventionally, the Landau distribution is applied only for ( ).

In the example of Fig. 1.6, where , the condition imposes a step size or
a , i.e. there is for protons in Ar no regime where the Landau distribution
can be used without generating negative energy losses. This is can also be seen from the Landau
case in the figure: the step size is such that , and the cut-off at zero energy
is clearly visible.

The approach adopted in the combined energy loss fluctuation model described in Sect. 1.3.6
consists in switching, if possible, to larger steps, thereby entering the domain where the Vavilov
and Gaussian distributions become applicable. A warning is issued should no such increase in
step size be possible, for instance because the smallest acceptable step size exceeds the distance
that remains to be traversed.

1.4.4 Vavilov distribution
Applicability

The Vavilov distribution is a variation on the Landau distribution which is intended to be a
better approximation in case the mean energy loss is approaching the largest energy which can
be transferred in any single collision. To this effect, the distribution depends on the parameter

. The distribution also depends on . For small and large irrespective of , the
Landau and Vavilov distribution are very similar.

Sampling parameter

The Vavilov distribution is allegedly meant to be sampled at

Using this sampling parameter does not (at all) lead to a smooth transition of the energy loss
distribution between the regimes covered by the Vavilov and Landau distributions. Given that
the Vavilov distribution function at small is virtually identical to the Landau distribution, we
sample the Vavilov distribution with the same parameter as the Landau distribution.

Mean

Contrary to the Landau distribution, the Vavilov distribution has a defined mean for all .
Truncations at high energy therefore do not have to be applied. Moreover, the mean of this
distribution is such that, with the above sampling parameter, the mean energy is indeed , as
shown in Fig. 1.3.
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Negative energy loss

Like the Landau distribution, the Vavilov distribution potentially leads to negative energy losses.
The conditions for this to happen are the similar to those for the Landau distribution, except
that there is a dependence, as can be seen from Fig. 1.2, which prompts the use of an
adjustable threshold: for , for and for

.
As with the Landau distribution, the approach to deal with negative energy losses is to in-

crease the step size until this risk vanishes. A warning is issued should no such increase in step
size be possible, for instance because the smallest acceptable step size exceeds the distance that
remains to be traversed.

Generators

Vavilov random numbers are expensive to generate if a high level of precision is required. The
main reason for this is the non-trivial dependence of the function on its parameters and .
The CERN program library provides a generator which is fast, but only accurate to 2 decimal
places, but also provides high-precision distribution function. The Garfield interface offers the
choice between the fast and inaccurate generator, and a much slower generator based on the
high-precision distribution function. The importance of this choice can be judged from Fig. 1.3.

1.4.5 Gaussian distribution
Applicability

For large , and using the Landau sampling parameter, the Vavilov distribution is almost Gauss-
ian with a mean equal to and a width equal to

Note that is proportional to the step size through the term, a property which will be
used when checking the convolution properties in Sect. 1.3.7.

Negative energy loss

Whilest not an issue for a proton traversing argon, negative energy losses in the Gaussian regime
can easily occur for slow, heavy ions. It is almost always the Gaussian regime that applies for
such ions since their is small, which makes their maximum energy transfer small and
their large, as a result of which becomes large.

Such particles lose their energy fast, but they do so essentially through nuclear interactions,
as shown in Fig. 1.1 for a ion in Xe.

Let us consider a with a kinetic energy traversing Xe, illustrated in
Fig. 1.5. According to SRIM, such a stops after . One is therefore tempted to
simulate this process on the scale of microns.
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: Gaussian distribution.

In combining these distributions, we want to ensure that the following requirements are satisfied:

the distribution truely has the desired mean;

no negative energy losses occur;

no abrupt changes when moving from one model to another;

plausable results.

Stability of the mean

As shown in Fig. 1.3, the mean energy as generated by these three distributions does indeed
assume the correct value, except for very thin layers.

It is also apparent from the figure that the truncation of the Landau distribution is instrumental
in ensuring that the mean is stable. Using the high-precision Vavilov generator is beneficial, but
whether the 5 % improvement is worth the computational overhead, is debateable considering
that the intrinsic accuracy of the distribution is thought to be poorer.

Transitions between the distributions

The transitions between the Landau and Vavilov distribution is shown on the left in Fig. 1.4 for
. For lower values of , the Landau and Vavilov distributions are barely distinghuisable.

The transition point in Garfield is at . The transition between the Vavilov and Gaussian
distribution is shown on the right for , which is well below the transition point in Garfield
at .

Comparison with Heed

As shown in Fig. 1.6, the energy loss distribution computed with the Heed program, agrees with
the model described above. Agreement is poorest for the thinnest layers, where the Landau
distribution is supposed to be applicable. The Heed program has been extensively tested for
energy loss by GeV-energy charged particles traversing gas detectors.

1.4.7 Convolution properties
Since we wish to generate energy deposition patterns, with spatial detail, we will need to sub-
divide the layer and deposit energy in each of these. For this to be a consistent approach, we
need to ascertain that the distributions of the energy loss satisfy to a sufficient precision the
convolution property:

where “*” stands for multiple convolution.
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Figure 1.7: The distribution of the energy deposited by a proton with a kinetic energy of
in a single layer (orange) of argon of thickness , , and should

be the same as the energy deposited in 5 successive layers of 1/5th the thickness (purple).
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The mean energy loss and the energy loss parameter both scale linearly in . The maxi-
mum energy transfer does not depend on . As a result, the multiple-thickness sampling
parameter as used with the Landau and Vavilov distributions, is related to the single-
thickness parameter by:

This precisely matches the convolution property of the Landau distribution

Thus, the convolution property holds exactly for the complete Landau distribution. We however
use a truncated Landau distribution, for which the convolution property is not satisfied exactly.
In particular, there will be distortions in the high-energy part of the distribution.

Presumably, the Vavilov distribution satisfies similar convolution properties as the Landau
distribution (to be verified).

The convolution property for the Gaussian distribution is trivially satisfied since and
both are proportional to .

The above properties are, as shown in Fig. 1.7, satisified by the combined generator.

1.5 Ionisation electron statistics
The Heed program itself converts electromagnetic energy losses into ionisation electrons. The
SRIM output doesn’t contain information on this process. Given that the Heed model closely
reproduces the experimental data available, Garfield applies the Heed model for this conversion
also to SRIM generated ionisation patterns.

In the Heed model, the electromagnetic energy loss is transformed into ionisation electrons
in an iterative process:

the electromagnetic energy loss for a step is computed;

to the energy loss is added the unused electromagnetic energy loss from earlier
steps, if any;

single-electron formation energies are drawn from a custom-designed distribution, and
subtracted from , as long as remains positive;

the energy that remains is assigned to for use in a following step, if any.

The distribution of single-electron formation energies is designed to be such that the above
process, for high electromagnetic energy losses, produces the work function and Fano factor
appropriate for the gas. The distribution is generated from a reference distribution which is flat
for , falling as for , and zero outside these limits. This
reference distribution leads to a Fano factor of . Distributions for other work functions and
Fano factors are obtained by scaling the reference distribution, as explained in [Igor Smirnov,
NIM A 554 (2005) 474].
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Figure 1.8: The effective work at low electromagnetic energy loss is considerably larger than
the nominal work (orange line). This effect is well reproduced by the phenomenological model
shown in purple. Similarly, the Fano factor at low energy loss is close to 1 and it reaches its
asymptotic value only well above the nominal work function. This is illustrated here for a gas
with work function and Fano factor .

The work function of a gas is, as a rule, roughly twice the ionisation energy. The Fano
factor seems to be correlated with the ionisation factor as reported for instance in [A. Pansky, A.
Breskin and R. Chechik, J. Appl. Phys. 82 (1997) 871]. Both the work function and the Fano
factor have, in addition, a dependence on the electromagnetic energy as illustrated in Fig. 1.8.
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